Base field \(\Q(\sqrt{34}) \)
Generator \(w\), with minimal polynomial \(x^{2} - 34\); narrow class number \(4\) and class number \(2\).
Form
Weight: | $[2, 2]$ |
Level: | $[18, 18, w + 4]$ |
Dimension: | $1$ |
CM: | no |
Base change: | no |
Newspace dimension: | $40$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
Norm | Prime | Eigenvalue |
---|---|---|
2 | $[2, 2, w - 6]$ | $-1$ |
3 | $[3, 3, w + 1]$ | $\phantom{-}0$ |
3 | $[3, 3, w + 2]$ | $\phantom{-}0$ |
5 | $[5, 5, w + 2]$ | $\phantom{-}2$ |
5 | $[5, 5, w + 3]$ | $\phantom{-}0$ |
11 | $[11, 11, w + 1]$ | $-2$ |
11 | $[11, 11, w + 10]$ | $-2$ |
17 | $[17, 17, -3w + 17]$ | $\phantom{-}2$ |
29 | $[29, 29, w + 11]$ | $\phantom{-}8$ |
29 | $[29, 29, w + 18]$ | $\phantom{-}2$ |
37 | $[37, 37, w + 16]$ | $-8$ |
37 | $[37, 37, w + 21]$ | $-2$ |
47 | $[47, 47, -w - 9]$ | $\phantom{-}0$ |
47 | $[47, 47, w - 9]$ | $\phantom{-}4$ |
49 | $[49, 7, -7]$ | $\phantom{-}6$ |
61 | $[61, 61, w + 20]$ | $\phantom{-}8$ |
61 | $[61, 61, w + 41]$ | $-10$ |
89 | $[89, 89, 2w - 15]$ | $-2$ |
89 | $[89, 89, -2w - 15]$ | $-10$ |
103 | $[103, 103, -14w + 81]$ | $-16$ |
Atkin-Lehner eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
$2$ | $[2, 2, w - 6]$ | $1$ |
$3$ | $[3, 3, w + 1]$ | $-1$ |