Properties

Label 2.2.136.1-18.2-a
Base field \(\Q(\sqrt{34}) \)
Weight $[2, 2]$
Level norm $18$
Level $[18, 18, w + 4]$
Dimension $1$
CM no
Base change no

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{34}) \)

Generator \(w\), with minimal polynomial \(x^{2} - 34\); narrow class number \(4\) and class number \(2\).

Form

Weight: $[2, 2]$
Level: $[18, 18, w + 4]$
Dimension: $1$
CM: no
Base change: no
Newspace dimension: $40$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w - 6]$ $-1$
3 $[3, 3, w + 1]$ $\phantom{-}0$
3 $[3, 3, w + 2]$ $\phantom{-}0$
5 $[5, 5, w + 2]$ $-2$
5 $[5, 5, w + 3]$ $\phantom{-}0$
11 $[11, 11, w + 1]$ $\phantom{-}2$
11 $[11, 11, w + 10]$ $\phantom{-}2$
17 $[17, 17, -3w + 17]$ $\phantom{-}2$
29 $[29, 29, w + 11]$ $-8$
29 $[29, 29, w + 18]$ $-2$
37 $[37, 37, w + 16]$ $\phantom{-}8$
37 $[37, 37, w + 21]$ $\phantom{-}2$
47 $[47, 47, -w - 9]$ $\phantom{-}0$
47 $[47, 47, w - 9]$ $\phantom{-}4$
49 $[49, 7, -7]$ $\phantom{-}6$
61 $[61, 61, w + 20]$ $-8$
61 $[61, 61, w + 41]$ $\phantom{-}10$
89 $[89, 89, 2w - 15]$ $-2$
89 $[89, 89, -2w - 15]$ $-10$
103 $[103, 103, -14w + 81]$ $-16$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, w - 6]$ $1$
$3$ $[3, 3, w + 1]$ $-1$