Base field \(\Q(\sqrt{13}) \)
Generator \(w\), with minimal polynomial \(x^2 - x - 3\); narrow class number \(1\) and class number \(1\).
Form
| Weight: | $[2, 2]$ |
| Level: | $[81, 81, -5 w + 2]$ |
| Dimension: | $1$ |
| CM: | no |
| Base change: | no |
| Newspace dimension: | $4$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
| Norm | Prime | Eigenvalue |
|---|---|---|
| 3 | $[3, 3, -w]$ | $\phantom{-}2$ |
| 3 | $[3, 3, -w + 1]$ | $\phantom{-}0$ |
| 4 | $[4, 2, 2]$ | $\phantom{-}1$ |
| 13 | $[13, 13, -2 w + 1]$ | $-5$ |
| 17 | $[17, 17, w + 4]$ | $-3$ |
| 17 | $[17, 17, -w + 5]$ | $\phantom{-}3$ |
| 23 | $[23, 23, 3 w + 1]$ | $\phantom{-}6$ |
| 23 | $[23, 23, -3 w + 4]$ | $\phantom{-}6$ |
| 25 | $[25, 5, 5]$ | $\phantom{-}1$ |
| 29 | $[29, 29, 3 w - 2]$ | $-6$ |
| 29 | $[29, 29, -3 w + 1]$ | $\phantom{-}9$ |
| 43 | $[43, 43, -4 w - 1]$ | $\phantom{-}2$ |
| 43 | $[43, 43, 4 w - 5]$ | $-4$ |
| 49 | $[49, 7, -7]$ | $-13$ |
| 53 | $[53, 53, -w - 7]$ | $-9$ |
| 53 | $[53, 53, w - 8]$ | $-3$ |
| 61 | $[61, 61, -3 w - 8]$ | $-5$ |
| 61 | $[61, 61, 3 w - 11]$ | $-14$ |
| 79 | $[79, 79, 5 w - 4]$ | $\phantom{-}10$ |
| 79 | $[79, 79, 5 w - 1]$ | $\phantom{-}10$ |
Atkin-Lehner eigenvalues
| Norm | Prime | Eigenvalue |
|---|---|---|
| $3$ | $[3, 3, -w + 1]$ | $1$ |