Base field \(\Q(\sqrt{30}) \)
Generator \(w\), with minimal polynomial \(x^{2} - 30\); narrow class number \(4\) and class number \(2\).
Form
Weight: | $[2, 2]$ |
Level: | $[30, 30, w]$ |
Dimension: | $1$ |
CM: | no |
Base change: | yes |
Newspace dimension: | $44$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
Norm | Prime | Eigenvalue |
---|---|---|
2 | $[2, 2, w]$ | $-1$ |
3 | $[3, 3, w]$ | $\phantom{-}1$ |
5 | $[5, 5, -w + 5]$ | $\phantom{-}1$ |
7 | $[7, 7, w + 3]$ | $\phantom{-}4$ |
7 | $[7, 7, w + 4]$ | $\phantom{-}4$ |
13 | $[13, 13, w + 2]$ | $-2$ |
13 | $[13, 13, w + 11]$ | $-2$ |
17 | $[17, 17, w + 8]$ | $\phantom{-}6$ |
17 | $[17, 17, w + 9]$ | $\phantom{-}6$ |
19 | $[19, 19, w + 7]$ | $-4$ |
19 | $[19, 19, -w + 7]$ | $-4$ |
29 | $[29, 29, -w - 1]$ | $\phantom{-}6$ |
29 | $[29, 29, w - 1]$ | $\phantom{-}6$ |
37 | $[37, 37, w + 17]$ | $-2$ |
37 | $[37, 37, w + 20]$ | $-2$ |
71 | $[71, 71, 2w - 7]$ | $\phantom{-}0$ |
71 | $[71, 71, -2w - 7]$ | $\phantom{-}0$ |
83 | $[83, 83, w + 14]$ | $\phantom{-}12$ |
83 | $[83, 83, w + 69]$ | $\phantom{-}12$ |
101 | $[101, 101, -7w + 37]$ | $-18$ |
Atkin-Lehner eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
$2$ | $[2, 2, w]$ | $1$ |
$3$ | $[3, 3, w]$ | $-1$ |
$5$ | $[5, 5, -w + 5]$ | $-1$ |