# Properties

 Base field $$\Q(\sqrt{3})$$ Weight [2, 2] Level norm 49 Level $[49, 7, -7]$ Label 2.2.12.1-49.1-a Dimension 6 CM no Base change yes

# Related objects

• L-function not available

## Base field $$\Q(\sqrt{3})$$

Generator $$w$$, with minimal polynomial $$x^{2} - 3$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight [2, 2] Level $[49, 7, -7]$ Label 2.2.12.1-49.1-a Dimension 6 Is CM no Is base change yes Parent newspace dimension 6

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
$$x^{6} - 10x^{4} + 21x^{2} - 8$$
Norm Prime Eigenvalue
2 $[2, 2, -w + 1]$ $\phantom{-}e$
3 $[3, 3, w]$ $-\frac{1}{2}e^{5} + \frac{9}{2}e^{3} - 7e$
11 $[11, 11, -2w + 1]$ $\phantom{-}\frac{1}{2}e^{5} - 5e^{3} + \frac{17}{2}e$
11 $[11, 11, 2w + 1]$ $\phantom{-}\frac{1}{2}e^{5} - 5e^{3} + \frac{17}{2}e$
13 $[13, 13, w + 4]$ $-\frac{1}{2}e^{4} + \frac{7}{2}e^{2} - 2$
13 $[13, 13, -w + 4]$ $-\frac{1}{2}e^{4} + \frac{7}{2}e^{2} - 2$
23 $[23, 23, -3w + 2]$ $\phantom{-}\frac{1}{2}e^{5} - 4e^{3} + \frac{7}{2}e$
23 $[23, 23, 3w + 2]$ $\phantom{-}\frac{1}{2}e^{5} - 4e^{3} + \frac{7}{2}e$
25 $[25, 5, 5]$ $\phantom{-}e^{4} - 7e^{2} + 8$
37 $[37, 37, 2w - 7]$ $-e^{4} + 9e^{2} - 12$
37 $[37, 37, -2w - 7]$ $-e^{4} + 9e^{2} - 12$
47 $[47, 47, -4w - 1]$ $\phantom{-}e^{5} - 8e^{3} + 7e$
47 $[47, 47, 4w - 1]$ $\phantom{-}e^{5} - 8e^{3} + 7e$
49 $[49, 7, -7]$ $-1$
59 $[59, 59, 5w - 4]$ $-\frac{1}{2}e^{5} + \frac{7}{2}e^{3} + 4e$
59 $[59, 59, -5w - 4]$ $-\frac{1}{2}e^{5} + \frac{7}{2}e^{3} + 4e$
61 $[61, 61, -w - 8]$ $\phantom{-}\frac{1}{2}e^{4} - \frac{15}{2}e^{2} + 14$
61 $[61, 61, w - 8]$ $\phantom{-}\frac{1}{2}e^{4} - \frac{15}{2}e^{2} + 14$
71 $[71, 71, 5w - 2]$ $-\frac{3}{2}e^{5} + 12e^{3} - \frac{25}{2}e$
71 $[71, 71, -5w - 2]$ $-\frac{3}{2}e^{5} + 12e^{3} - \frac{25}{2}e$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
49 $[49, 7, -7]$ $1$