# Properties

 Label 2.2.12.1-25.1-a Base field $$\Q(\sqrt{3})$$ Weight $[2, 2]$ Level norm $25$ Level $[25, 5, 5]$ Dimension $4$ CM no Base change yes

# Related objects

• L-function not available

## Base field $$\Q(\sqrt{3})$$

Generator $$w$$, with minimal polynomial $$x^{2} - 3$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight: $[2, 2]$ Level: $[25, 5, 5]$ Dimension: $4$ CM: no Base change: yes Newspace dimension: $4$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

 $$x^{4} - 7x^{2} + 8$$
Norm Prime Eigenvalue
2 $[2, 2, -w + 1]$ $\phantom{-}e$
3 $[3, 3, w]$ $-\frac{1}{2}e^{3} + \frac{3}{2}e$
11 $[11, 11, -2w + 1]$ $\phantom{-}e^{3} - 5e$
11 $[11, 11, 2w + 1]$ $\phantom{-}e^{3} - 5e$
13 $[13, 13, w + 4]$ $-2e^{2} + 6$
13 $[13, 13, -w + 4]$ $-2e^{2} + 6$
23 $[23, 23, -3w + 2]$ $-\frac{3}{2}e^{3} + \frac{17}{2}e$
23 $[23, 23, 3w + 2]$ $-\frac{3}{2}e^{3} + \frac{17}{2}e$
25 $[25, 5, 5]$ $-1$
37 $[37, 37, 2w - 7]$ $\phantom{-}2e^{2} - 6$
37 $[37, 37, -2w - 7]$ $\phantom{-}2e^{2} - 6$
47 $[47, 47, -4w - 1]$ $\phantom{-}\frac{1}{2}e^{3} - \frac{3}{2}e$
47 $[47, 47, 4w - 1]$ $\phantom{-}\frac{1}{2}e^{3} - \frac{3}{2}e$
49 $[49, 7, -7]$ $-2e^{2} + 16$
59 $[59, 59, 5w - 4]$ $-6e$
59 $[59, 59, -5w - 4]$ $-6e$
61 $[61, 61, -w - 8]$ $\phantom{-}2e^{2} - 8$
61 $[61, 61, w - 8]$ $\phantom{-}2e^{2} - 8$
71 $[71, 71, 5w - 2]$ $-e^{3} + 7e$
71 $[71, 71, -5w - 2]$ $-e^{3} + 7e$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$25$ $[25, 5, 5]$ $1$