Properties

Label 2.2.12.1-25.1-a
Base field \(\Q(\sqrt{3}) \)
Weight $[2, 2]$
Level norm $25$
Level $[25, 5, 5]$
Dimension $4$
CM no
Base change yes

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{3}) \)

Generator \(w\), with minimal polynomial \(x^{2} - 3\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[25, 5, 5]$
Dimension: $4$
CM: no
Base change: yes
Newspace dimension: $4$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^{4} - 7x^{2} + 8\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, -w + 1]$ $\phantom{-}e$
3 $[3, 3, w]$ $-\frac{1}{2}e^{3} + \frac{3}{2}e$
11 $[11, 11, -2w + 1]$ $\phantom{-}e^{3} - 5e$
11 $[11, 11, 2w + 1]$ $\phantom{-}e^{3} - 5e$
13 $[13, 13, w + 4]$ $-2e^{2} + 6$
13 $[13, 13, -w + 4]$ $-2e^{2} + 6$
23 $[23, 23, -3w + 2]$ $-\frac{3}{2}e^{3} + \frac{17}{2}e$
23 $[23, 23, 3w + 2]$ $-\frac{3}{2}e^{3} + \frac{17}{2}e$
25 $[25, 5, 5]$ $-1$
37 $[37, 37, 2w - 7]$ $\phantom{-}2e^{2} - 6$
37 $[37, 37, -2w - 7]$ $\phantom{-}2e^{2} - 6$
47 $[47, 47, -4w - 1]$ $\phantom{-}\frac{1}{2}e^{3} - \frac{3}{2}e$
47 $[47, 47, 4w - 1]$ $\phantom{-}\frac{1}{2}e^{3} - \frac{3}{2}e$
49 $[49, 7, -7]$ $-2e^{2} + 16$
59 $[59, 59, 5w - 4]$ $-6e$
59 $[59, 59, -5w - 4]$ $-6e$
61 $[61, 61, -w - 8]$ $\phantom{-}2e^{2} - 8$
61 $[61, 61, w - 8]$ $\phantom{-}2e^{2} - 8$
71 $[71, 71, 5w - 2]$ $-e^{3} + 7e$
71 $[71, 71, -5w - 2]$ $-e^{3} + 7e$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$25$ $[25, 5, 5]$ $1$