# Properties

 Label 2.2.12.1-2166.1-f Base field $$\Q(\sqrt{3})$$ Weight $[2, 2]$ Level norm $2166$ Level $[2166, 114, -19w + 57]$ Dimension $1$ CM no Base change yes

# Related objects

## Base field $$\Q(\sqrt{3})$$

Generator $$w$$, with minimal polynomial $$x^{2} - 3$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight: $[2, 2]$ Level: $[2166, 114, -19w + 57]$ Dimension: $1$ CM: no Base change: yes Newspace dimension: $6$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -w + 1]$ $\phantom{-}1$
3 $[3, 3, w]$ $\phantom{-}1$
11 $[11, 11, -2w + 1]$ $\phantom{-}0$
11 $[11, 11, 2w + 1]$ $\phantom{-}0$
13 $[13, 13, w + 4]$ $-4$
13 $[13, 13, -w + 4]$ $-4$
23 $[23, 23, -3w + 2]$ $-6$
23 $[23, 23, 3w + 2]$ $-6$
25 $[25, 5, 5]$ $-10$
37 $[37, 37, 2w - 7]$ $-4$
37 $[37, 37, -2w - 7]$ $-4$
47 $[47, 47, -4w - 1]$ $\phantom{-}6$
47 $[47, 47, 4w - 1]$ $\phantom{-}6$
49 $[49, 7, -7]$ $\phantom{-}2$
59 $[59, 59, 5w - 4]$ $-12$
59 $[59, 59, -5w - 4]$ $-12$
61 $[61, 61, -w - 8]$ $\phantom{-}14$
61 $[61, 61, w - 8]$ $\phantom{-}14$
71 $[71, 71, 5w - 2]$ $\phantom{-}0$
71 $[71, 71, -5w - 2]$ $\phantom{-}0$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, -w + 1]$ $-1$
$3$ $[3, 3, w]$ $-1$
$361$ $[361, 19, -19]$ $-1$