Properties

Label 2.2.113.1-4.1-c
Base field \(\Q(\sqrt{113}) \)
Weight $[2, 2]$
Level norm $4$
Level $[4, 2, 2]$
Dimension $1$
CM no
Base change yes

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{113}) \)

Generator \(w\), with minimal polynomial \(x^2 - x - 28\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[4, 2, 2]$
Dimension: $1$
CM: no
Base change: yes
Newspace dimension: $7$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -w + 6]$ $\phantom{-}1$
2 $[2, 2, w + 5]$ $\phantom{-}1$
7 $[7, 7, 6 w - 35]$ $\phantom{-}0$
7 $[7, 7, -6 w - 29]$ $\phantom{-}0$
9 $[9, 3, 3]$ $\phantom{-}6$
11 $[11, 11, 4 w + 19]$ $-4$
11 $[11, 11, 4 w - 23]$ $-4$
13 $[13, 13, -2 w + 11]$ $\phantom{-}2$
13 $[13, 13, 2 w + 9]$ $\phantom{-}2$
25 $[25, 5, -5]$ $\phantom{-}2$
31 $[31, 31, 2 w - 13]$ $-8$
31 $[31, 31, -2 w - 11]$ $-8$
41 $[41, 41, -8 w - 39]$ $-2$
41 $[41, 41, 8 w - 47]$ $-2$
53 $[53, 53, -26 w - 125]$ $-6$
53 $[53, 53, 26 w - 151]$ $-6$
61 $[61, 61, -14 w + 81]$ $\phantom{-}14$
61 $[61, 61, -14 w - 67]$ $\phantom{-}14$
83 $[83, 83, 2 w - 15]$ $\phantom{-}4$
83 $[83, 83, -2 w - 13]$ $\phantom{-}4$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, -w + 6]$ $-1$
$2$ $[2, 2, w + 5]$ $-1$