Base field \(\Q(\sqrt{113}) \)
Generator \(w\), with minimal polynomial \(x^2 - x - 28\); narrow class number \(1\) and class number \(1\).
Form
| Weight: | $[2, 2]$ |
| Level: | $[4, 2, 2]$ |
| Dimension: | $1$ |
| CM: | no |
| Base change: | yes |
| Newspace dimension: | $7$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
| Norm | Prime | Eigenvalue |
|---|---|---|
| 2 | $[2, 2, -w + 6]$ | $\phantom{-}1$ |
| 2 | $[2, 2, w + 5]$ | $\phantom{-}1$ |
| 7 | $[7, 7, 6 w - 35]$ | $\phantom{-}0$ |
| 7 | $[7, 7, -6 w - 29]$ | $\phantom{-}0$ |
| 9 | $[9, 3, 3]$ | $\phantom{-}6$ |
| 11 | $[11, 11, 4 w + 19]$ | $-4$ |
| 11 | $[11, 11, 4 w - 23]$ | $-4$ |
| 13 | $[13, 13, -2 w + 11]$ | $\phantom{-}2$ |
| 13 | $[13, 13, 2 w + 9]$ | $\phantom{-}2$ |
| 25 | $[25, 5, -5]$ | $\phantom{-}2$ |
| 31 | $[31, 31, 2 w - 13]$ | $-8$ |
| 31 | $[31, 31, -2 w - 11]$ | $-8$ |
| 41 | $[41, 41, -8 w - 39]$ | $-2$ |
| 41 | $[41, 41, 8 w - 47]$ | $-2$ |
| 53 | $[53, 53, -26 w - 125]$ | $-6$ |
| 53 | $[53, 53, 26 w - 151]$ | $-6$ |
| 61 | $[61, 61, -14 w + 81]$ | $\phantom{-}14$ |
| 61 | $[61, 61, -14 w - 67]$ | $\phantom{-}14$ |
| 83 | $[83, 83, 2 w - 15]$ | $\phantom{-}4$ |
| 83 | $[83, 83, -2 w - 13]$ | $\phantom{-}4$ |
Atkin-Lehner eigenvalues
| Norm | Prime | Eigenvalue |
|---|---|---|
| $2$ | $[2, 2, -w + 6]$ | $-1$ |
| $2$ | $[2, 2, w + 5]$ | $-1$ |