Properties

Label 2.2.105.1-35.1-a
Base field \(\Q(\sqrt{105}) \)
Weight $[2, 2]$
Level norm $35$
Level $[35, 35, w + 17]$
Dimension $1$
CM no
Base change yes

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{105}) \)

Generator \(w\), with minimal polynomial \(x^{2} - x - 26\); narrow class number \(4\) and class number \(2\).

Form

Weight: $[2, 2]$
Level: $[35, 35, w + 17]$
Dimension: $1$
CM: no
Base change: yes
Newspace dimension: $140$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w]$ $\phantom{-}0$
2 $[2, 2, w + 1]$ $\phantom{-}0$
3 $[3, 3, w + 1]$ $-1$
5 $[5, 5, 2w - 11]$ $-1$
7 $[7, 7, w + 3]$ $-1$
13 $[13, 13, w]$ $-5$
13 $[13, 13, w + 12]$ $-5$
23 $[23, 23, w + 8]$ $\phantom{-}6$
23 $[23, 23, w + 14]$ $\phantom{-}6$
41 $[41, 41, 2w - 9]$ $-12$
41 $[41, 41, -2w - 7]$ $-12$
53 $[53, 53, w + 11]$ $-12$
53 $[53, 53, w + 41]$ $-12$
59 $[59, 59, 4w + 17]$ $\phantom{-}0$
59 $[59, 59, 4w - 21]$ $\phantom{-}0$
73 $[73, 73, w + 27]$ $-2$
73 $[73, 73, w + 45]$ $-2$
79 $[79, 79, -6w - 29]$ $-1$
79 $[79, 79, 6w - 35]$ $-1$
89 $[89, 89, 2w - 5]$ $-12$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$5$ $[5, 5, 2w - 11]$ $1$
$7$ $[7, 7, w + 3]$ $1$