# Properties

 Base field $$\Q(\sqrt{105})$$ Weight [2, 2] Level norm 21 Level $[21, 21, -4w + 23]$ Label 2.2.105.1-21.1-d Dimension 1 CM no Base change yes

# Related objects

## Base field $$\Q(\sqrt{105})$$

Generator $$w$$, with minimal polynomial $$x^{2} - x - 26$$; narrow class number $$4$$ and class number $$2$$.

## Form

 Weight [2, 2] Level $[21, 21, -4w + 23]$ Label 2.2.105.1-21.1-d Dimension 1 Is CM no Is base change yes Parent newspace dimension 76

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w]$ $-1$
2 $[2, 2, w + 1]$ $-1$
3 $[3, 3, w + 1]$ $\phantom{-}1$
5 $[5, 5, 2w - 11]$ $-2$
7 $[7, 7, w + 3]$ $-1$
13 $[13, 13, w]$ $-2$
13 $[13, 13, w + 12]$ $-2$
23 $[23, 23, w + 8]$ $\phantom{-}0$
23 $[23, 23, w + 14]$ $\phantom{-}0$
41 $[41, 41, 2w - 9]$ $\phantom{-}2$
41 $[41, 41, -2w - 7]$ $\phantom{-}2$
53 $[53, 53, w + 11]$ $\phantom{-}6$
53 $[53, 53, w + 41]$ $\phantom{-}6$
59 $[59, 59, 4w + 17]$ $\phantom{-}12$
59 $[59, 59, 4w - 21]$ $\phantom{-}12$
73 $[73, 73, w + 27]$ $-6$
73 $[73, 73, w + 45]$ $-6$
79 $[79, 79, -6w - 29]$ $-16$
79 $[79, 79, 6w - 35]$ $-16$
89 $[89, 89, 2w - 5]$ $-14$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
3 $[3, 3, w + 1]$ $-1$
7 $[7, 7, w + 3]$ $1$