Properties

Label 2.2.105.1-15.1-a
Base field \(\Q(\sqrt{105}) \)
Weight $[2, 2]$
Level norm $15$
Level $[15, 15, w + 7]$
Dimension $1$
CM no
Base change yes

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{105}) \)

Generator \(w\), with minimal polynomial \(x^{2} - x - 26\); narrow class number \(4\) and class number \(2\).

Form

Weight: $[2, 2]$
Level: $[15, 15, w + 7]$
Dimension: $1$
CM: no
Base change: yes
Newspace dimension: $44$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w]$ $-1$
2 $[2, 2, w + 1]$ $-1$
3 $[3, 3, w + 1]$ $\phantom{-}1$
5 $[5, 5, 2w - 11]$ $-1$
7 $[7, 7, w + 3]$ $\phantom{-}0$
13 $[13, 13, w]$ $\phantom{-}2$
13 $[13, 13, w + 12]$ $\phantom{-}2$
23 $[23, 23, w + 8]$ $\phantom{-}0$
23 $[23, 23, w + 14]$ $\phantom{-}0$
41 $[41, 41, 2w - 9]$ $-10$
41 $[41, 41, -2w - 7]$ $-10$
53 $[53, 53, w + 11]$ $-10$
53 $[53, 53, w + 41]$ $-10$
59 $[59, 59, 4w + 17]$ $\phantom{-}4$
59 $[59, 59, 4w - 21]$ $\phantom{-}4$
73 $[73, 73, w + 27]$ $-10$
73 $[73, 73, w + 45]$ $-10$
79 $[79, 79, -6w - 29]$ $\phantom{-}0$
79 $[79, 79, 6w - 35]$ $\phantom{-}0$
89 $[89, 89, 2w - 5]$ $\phantom{-}6$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$3$ $[3, 3, w + 1]$ $-1$
$5$ $[5, 5, 2w - 11]$ $1$