# Properties

 Label 2.2.104.1-26.1-c Base field $$\Q(\sqrt{26})$$ Weight $[2, 2]$ Level norm $26$ Level $[26, 26, w]$ Dimension $1$ CM no Base change yes

# Learn more

## Base field $$\Q(\sqrt{26})$$

Generator $$w$$, with minimal polynomial $$x^{2} - 26$$; narrow class number $$2$$ and class number $$2$$.

## Form

 Weight: $[2, 2]$ Level: $[26, 26, w]$ Dimension: $1$ CM: no Base change: yes Newspace dimension: $48$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w]$ $\phantom{-}1$
5 $[5, 5, w + 1]$ $\phantom{-}3$
5 $[5, 5, w + 4]$ $\phantom{-}3$
9 $[9, 3, 3]$ $-5$
11 $[11, 11, w + 2]$ $-6$
11 $[11, 11, w + 9]$ $-6$
13 $[13, 13, w]$ $-1$
17 $[17, 17, w + 3]$ $-3$
17 $[17, 17, -w + 3]$ $-3$
19 $[19, 19, w + 8]$ $-2$
19 $[19, 19, w + 11]$ $-2$
23 $[23, 23, -w - 7]$ $\phantom{-}0$
23 $[23, 23, w - 7]$ $\phantom{-}0$
37 $[37, 37, w + 10]$ $\phantom{-}7$
37 $[37, 37, w + 27]$ $\phantom{-}7$
49 $[49, 7, -7]$ $-13$
59 $[59, 59, w + 12]$ $\phantom{-}6$
59 $[59, 59, w + 47]$ $\phantom{-}6$
67 $[67, 67, w + 19]$ $-14$
67 $[67, 67, w + 48]$ $-14$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, w]$ $-1$
$13$ $[13, 13, w]$ $1$