Properties

Label 1072.2.g.b
Level $1072$
Weight $2$
Character orbit 1072.g
Analytic conductor $8.560$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1072,2,Mod(1071,1072)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1072, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1072.1071"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1072 = 2^{4} \cdot 67 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1072.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.55996309668\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{13})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{3} - 1) q^{3} - \beta_{2} q^{5} + ( - \beta_{3} - 2) q^{7} + ( - \beta_{3} + 1) q^{9} - 3 q^{11} - 3 \beta_1 q^{13} + (\beta_{2} + 3 \beta_1) q^{15} + 2 \beta_{3} q^{17} + ( - \beta_{2} + \beta_1) q^{19}+ \cdots + (3 \beta_{3} - 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} - 10 q^{7} + 2 q^{9} - 12 q^{11} + 4 q^{17} - 8 q^{21} - 16 q^{25} - 8 q^{27} - 16 q^{29} - 8 q^{31} + 6 q^{33} + 14 q^{37} - 26 q^{43} + 10 q^{49} + 24 q^{51} + 8 q^{63} + 18 q^{65} - 22 q^{67}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 7x^{2} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 7\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -\nu^{3} - 4\nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 3\beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -7\beta_{2} - 12\beta_1 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1072\mathbb{Z}\right)^\times\).

\(n\) \(337\) \(671\) \(805\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1071.1
2.30278i
2.30278i
1.30278i
1.30278i
0 −2.30278 0 3.00000i 0 −0.697224 0 2.30278 0
1071.2 0 −2.30278 0 3.00000i 0 −0.697224 0 2.30278 0
1071.3 0 1.30278 0 3.00000i 0 −4.30278 0 −1.30278 0
1071.4 0 1.30278 0 3.00000i 0 −4.30278 0 −1.30278 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
268.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1072.2.g.b 4
4.b odd 2 1 1072.2.g.d yes 4
67.b odd 2 1 1072.2.g.d yes 4
268.d even 2 1 inner 1072.2.g.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1072.2.g.b 4 1.a even 1 1 trivial
1072.2.g.b 4 268.d even 2 1 inner
1072.2.g.d yes 4 4.b odd 2 1
1072.2.g.d yes 4 67.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1072, [\chi])\):

\( T_{3}^{2} + T_{3} - 3 \) Copy content Toggle raw display
\( T_{17}^{2} - 2T_{17} - 12 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + T - 3)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + 5 T + 3)^{2} \) Copy content Toggle raw display
$11$ \( (T + 3)^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + 63T^{2} + 729 \) Copy content Toggle raw display
$17$ \( (T^{2} - 2 T - 12)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + 31T^{2} + 81 \) Copy content Toggle raw display
$23$ \( T^{4} + 58T^{2} + 9 \) Copy content Toggle raw display
$29$ \( (T^{2} + 8 T + 3)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 4 T - 9)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} - 7 T + 9)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + 63T^{2} + 729 \) Copy content Toggle raw display
$43$ \( (T^{2} + 13 T + 39)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 67T^{2} + 729 \) Copy content Toggle raw display
$53$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 112T^{2} + 2304 \) Copy content Toggle raw display
$61$ \( T^{4} + 63T^{2} + 729 \) Copy content Toggle raw display
$67$ \( T^{4} + 22 T^{3} + \cdots + 4489 \) Copy content Toggle raw display
$71$ \( T^{4} + 34T^{2} + 81 \) Copy content Toggle raw display
$73$ \( (T^{2} + 10 T + 12)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 13 T + 39)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 151T^{2} + 4761 \) Copy content Toggle raw display
$89$ \( (T^{2} - 16 T + 51)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 306T^{2} + 6561 \) Copy content Toggle raw display
show more
show less