// Make newform 3024.2.b.f in Magma, downloaded from the LMFDB on 28 March 2024. // To make the character of type GrpDrchElt, type "MakeCharacter_3024_b();" // To make the character of type GrpDrchElt with Codomain the HeckeField, type "MakeCharacter_3024_b_Hecke();" // To make the coeffs of the qexp of the newform in the Hecke field type "qexpCoeffs();" // To make the newform (type ModFrm), type "MakeNewformModFrm_3024_2_b_f();". // This may take a long time! To see verbose output, uncomment the SetVerbose lines below. // The precision argument determines an initial guess on how many Fourier coefficients to use. // This guess is increased enough to uniquely determine the newform. // To make the Hecke irreducible modular symbols subspace (type ModSym) // containing the newform, type "MakeNewformModSym_3024_2_b_f();". // This may take a long time! To see verbose output, uncomment the SetVerbose line below. // The default sign is -1. You can change this with the optional parameter "sign". function ConvertToHeckeField(input: pass_field := false, Kf := []) if not pass_field then poly := [1, -1, 1]; Kf := NumberField(Polynomial([elt : elt in poly])); AssignNames(~Kf, ["nu"]); end if; Rf_num := [[1, 0], [-1, 3]]; Rf_basisdens := [1, 1]; Rf_basisnums := ChangeUniverse([[z : z in elt] : elt in Rf_num], Kf); Rfbasis := [Rf_basisnums[i]/Rf_basisdens[i] : i in [1..Degree(Kf)]]; inp_vec := Vector(Rfbasis)*ChangeRing(Transpose(Matrix([[elt : elt in row] : row in input])),Kf); return Eltseq(inp_vec); end function; // To make the character of type GrpDrchElt, type "MakeCharacter_3024_b();" function MakeCharacter_3024_b() N := 3024; order := 2; char_gens := [1135, 757, 785, 2593]; v := [1, 2, 2, 1]; // chi(gens[i]) = zeta^v[i] assert UnitGenerators(DirichletGroup(N)) eq char_gens; F := CyclotomicField(order); chi := DirichletCharacterFromValuesOnUnitGenerators(DirichletGroup(N,F),[F|F.1^e:e in v]); return MinimalBaseRingCharacter(chi); end function; // To make the character of type GrpDrchElt with Codomain the HeckeField, type "MakeCharacter_3024_b_Hecke();" function MakeCharacter_3024_b_Hecke(Kf) N := 3024; order := 2; char_gens := [1135, 757, 785, 2593]; char_values := [[-1, 0], [1, 0], [1, 0], [-1, 0]]; assert UnitGenerators(DirichletGroup(N)) eq char_gens; values := ConvertToHeckeField(char_values : pass_field := true, Kf := Kf); // the value of chi on the gens as elements in the Hecke field F := Universe(values);// the Hecke field chi := DirichletCharacterFromValuesOnUnitGenerators(DirichletGroup(N,F),values); return chi; end function; function ExtendMultiplicatively(weight, aps, character) prec := NextPrime(NthPrime(#aps)) - 1; // we will able to figure out a_0 ... a_prec primes := PrimesUpTo(prec); prime_powers := primes; assert #primes eq #aps; log_prec := Floor(Log(prec)/Log(2)); // prec < 2^(log_prec+1) F := Universe(aps); FXY := PolynomialRing(F, 2); // 1/(1 - a_p T + p^(weight - 1) * char(p) T^2) = 1 + a_p T + a_{p^2} T^2 + ... R := PowerSeriesRing(FXY : Precision := log_prec + 1); recursion := Coefficients(1/(1 - X*T + Y*T^2)); coeffs := [F!0: i in [1..(prec+1)]]; coeffs[1] := 1; //a_1 for i := 1 to #primes do p := primes[i]; coeffs[p] := aps[i]; b := p^(weight - 1) * F!character(p); r := 2; p_power := p * p; //deals with powers of p while p_power le prec do Append(~prime_powers, p_power); coeffs[p_power] := Evaluate(recursion[r + 1], [aps[i], b]); p_power *:= p; r +:= 1; end while; end for; Sort(~prime_powers); for pp in prime_powers do for k := 1 to Floor(prec/pp) do if GCD(k, pp) eq 1 then coeffs[pp*k] := coeffs[pp]*coeffs[k]; end if; end for; end for; return coeffs; end function; function qexpCoeffs() // To make the coeffs of the qexp of the newform in the Hecke field type "qexpCoeffs();" weight := 2; raw_aps := [[0, 0], [0, 0], [0, 0], [-1, 1], [0, 0], [1, -2], [0, 0], [-7, 0], [0, 0], [0, 0], [4, 0], [-11, 0], [0, 0], [2, -4], [0, 0], [0, 0], [0, 0], [3, -6], [-3, 6], [0, 0], [3, -6], [1, -2], [0, 0], [0, 0], [1, -2], [0, 0], [13, 0], [0, 0], [2, 0], [0, 0], [2, -4], [0, 0], [0, 0], [-23, 0], [0, 0], [3, -6], [4, -8], [1, -2], [0, 0], [0, 0], [0, 0], [5, -10], [0, 0], [-23, 0], [0, 0], [11, 0], [-5, 10], [-28, 0], [0, 0], [4, -8], [0, 0], [0, 0], [-5, 10], [0, 0], [0, 0], [0, 0], [0, 0], [-29, 0], [-26, 0], [0, 0], [32, 0], [0, 0], [-16, 0], [0, 0], [1, -2], [0, 0], [7, -14], [5, 0], [0, 0], [-1, 2], [0, 0], [0, 0], [35, 0], [-13, 0], [-5, 10], [0, 0], [0, 0], [-4, 8], [0, 0], [-5, 10], [0, 0], [19, 0], [0, 0], [-8, 16], [-28, 0], [0, 0], [0, 0], [-10, 0], [0, 0], [-7, 14], [0, 0], [0, 0], [7, -14], [0, 0], [-6, 12], [0, 0], [0, 0], [0, 0], [43, 0], [-29, 0], [9, -18], [0, 0], [0, 0], [0, 0], [-7, 14], [-9, 18], [0, 0], [0, 0], [0, 0], [-8, 16], [-49, 0], [47, 0], [0, 0], [-17, 0], [5, -10], [0, 0], [-40, 0], [0, 0], [0, 0], [0, 0], [-3, 6], [37, 0], [0, 0], [0, 0], [-8, 0], [0, 0], [53, 0], [0, 0], [-44, 0], [4, -8], [-10, 20], [0, 0], [7, -14], [29, 0], [0, 0], [-5, 10], [0, 0], [31, 0], [0, 0], [0, 0], [-56, 0], [0, 0], [-11, 22], [0, 0], [-11, 22], [0, 0], [9, -18], [0, 0], [-13, 0], [0, 0], [59, 0], [0, 0], [7, -14], [0, 0], [11, -22], [0, 0], [6, -12], [0, 0], [-1, 2], [0, 0], [0, 0], [0, 0], [9, -18], [0, 0], [0, 0], [0, 0], [3, -6], [12, -24], [43, 0], [0, 0], [0, 0], [-12, 24], [0, 0], [-53, 0], [59, 0], [0, 0], [-2, 4], [0, 0], [-65, 0], [-4, 8], [-7, 14], [0, 0], [22, 0], [0, 0], [0, 0], [0, 0], [65, 0], [-35, 0], [67, 0], [0, 0], [13, -26], [0, 0], [-13, 26], [0, 0], [0, 0], [0, 0], [-59, 0], [-17, 0], [0, 0], [0, 0], [0, 0], [-19, 0], [11, -22], [9, -18], [0, 0], [0, 0], [-43, 0], [0, 0], [0, 0], [-67, 0], [-25, 0], [0, 0], [-9, 18], [0, 0], [0, 0], [3, -6], [14, -28], [0, 0], [0, 0], [0, 0], [-31, 0], [-68, 0], [0, 0], [14, -28], [0, 0], [-71, 0], [0, 0], [0, 0], [-35, 0], [0, 0], [-67, 0], [56, 0], [-2, 4], [0, 0], [-37, 0], [0, 0], [-1, 2], [0, 0], [0, 0], [0, 0], [0, 0], [7, 0], [77, 0], [-11, 0], [0, 0], [0, 0], [79, 0], [0, 0], [14, -28], [0, 0], [50, 0], [0, 0], [0, 0], [15, -30], [0, 0], [0, 0], [79, 0], [80, 0], [0, 0], [8, -16], [-7, 14], [0, 0], [9, -18], [13, -26], [0, 0], [64, 0], [0, 0], [0, 0], [14, -28], [0, 0], [-13, 26], [11, -22], [16, -32], [15, -30], [-16, 32], [-83, 0], [0, 0], [82, 0], [-74, 0], [0, 0], [0, 0], [10, -20], [0, 0], [-15, 30], [85, 0], [0, 0], [65, 0], [0, 0], [73, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [62, 0], [0, 0], [-1, 0], [0, 0], [0, 0], [-89, 0], [17, -34], [0, 0], [-14, 28]]; aps := ConvertToHeckeField(raw_aps); chi := MakeCharacter_3024_b_Hecke(Universe(aps)); return ExtendMultiplicatively(weight, aps, chi); end function; // To make the newform (type ModFrm), type "MakeNewformModFrm_3024_2_b_f();". // This may take a long time! To see verbose output, uncomment the SetVerbose lines below. // The precision argument determines an initial guess on how many Fourier coefficients to use. // This guess is increased enough to uniquely determine the newform. function MakeNewformModFrm_3024_2_b_f(:prec:=2) chi := MakeCharacter_3024_b(); f_vec := qexpCoeffs(); Kf := Universe(f_vec); // SetVerbose("ModularForms", true); // SetVerbose("ModularSymbols", true); S := CuspidalSubspace(ModularForms(chi, 2)); S := BaseChange(S, Kf); maxprec := NextPrime(1999) - 1; while true do trunc_vec := Vector(Kf, [0] cat [f_vec[i]: i in [1..prec]]); B := Basis(S, prec + 1); S_basismat := Matrix([AbsEltseq(g): g in B]); if Rank(S_basismat) eq Min(NumberOfRows(S_basismat), NumberOfColumns(S_basismat)) then S_basismat := ChangeRing(S_basismat,Kf); f_lincom := Solution(S_basismat,trunc_vec); f := &+[f_lincom[i]*Basis(S)[i] : i in [1..#Basis(S)]]; return f; end if; error if prec eq maxprec, "Unable to distinguish newform within newspace"; prec := Min(Ceiling(1.25 * prec), maxprec); end while; end function; // To make the Hecke irreducible modular symbols subspace (type ModSym) // containing the newform, type "MakeNewformModSym_3024_2_b_f();". // This may take a long time! To see verbose output, uncomment the SetVerbose line below. // The default sign is -1. You can change this with the optional parameter "sign". function MakeNewformModSym_3024_2_b_f( : sign := -1) R := PolynomialRing(Rationals()); chi := MakeCharacter_3024_b(); // SetVerbose("ModularSymbols", true); Snew := NewSubspace(CuspidalSubspace(ModularSymbols(chi,2,sign))); Vf := Kernel([<5,R![0, 1]>,<11,R![0, 1]>,<13,R![27, 0, 1]>,<17,R![0, 1]>,<19,R![7, 1]>,<29,R![0, 1]>,<47,R![0, 1]>],Snew); return Vf; end function;