// Make newform 288.2.a.e in Magma, downloaded from the LMFDB on 19 March 2024. // To make the character of type GrpDrchElt, type "MakeCharacter_288_a();" // To make the coeffs of the qexp of the newform in the Hecke field type "qexpCoeffs();" // To make the newform (type ModFrm), type "MakeNewformModFrm_288_2_a_e();". // This may take a long time! To see verbose output, uncomment the SetVerbose lines below. // The precision argument determines an initial guess on how many Fourier coefficients to use. // This guess is increased enough to uniquely determine the newform. // To make the Hecke irreducible modular symbols subspace (type ModSym) // containing the newform, type "MakeNewformModSym_288_2_a_e();". // This may take a long time! To see verbose output, uncomment the SetVerbose line below. // The default sign is -1. You can change this with the optional parameter "sign". function ConvertToHeckeField(input: pass_field := false, Kf := []) if not pass_field then Kf := Rationals(); end if; return [Kf!elt[1] : elt in input]; end function; // To make the character of type GrpDrchElt, type "MakeCharacter_288_a();" function MakeCharacter_288_a() N := 288; order := 1; char_gens := [127, 37, 65]; v := [1, 1, 1]; // chi(gens[i]) = zeta^v[i] assert UnitGenerators(DirichletGroup(N)) eq char_gens; F := CyclotomicField(order); chi := DirichletCharacterFromValuesOnUnitGenerators(DirichletGroup(N,F),[F|F.1^e:e in v]); return MinimalBaseRingCharacter(chi); end function; function MakeCharacter_288_a_Hecke(Kf) return MakeCharacter_288_a(); end function; function ExtendMultiplicatively(weight, aps, character) prec := NextPrime(NthPrime(#aps)) - 1; // we will able to figure out a_0 ... a_prec primes := PrimesUpTo(prec); prime_powers := primes; assert #primes eq #aps; log_prec := Floor(Log(prec)/Log(2)); // prec < 2^(log_prec+1) F := Universe(aps); FXY := PolynomialRing(F, 2); // 1/(1 - a_p T + p^(weight - 1) * char(p) T^2) = 1 + a_p T + a_{p^2} T^2 + ... R := PowerSeriesRing(FXY : Precision := log_prec + 1); recursion := Coefficients(1/(1 - X*T + Y*T^2)); coeffs := [F!0: i in [1..(prec+1)]]; coeffs[1] := 1; //a_1 for i := 1 to #primes do p := primes[i]; coeffs[p] := aps[i]; b := p^(weight - 1) * F!character(p); r := 2; p_power := p * p; //deals with powers of p while p_power le prec do Append(~prime_powers, p_power); coeffs[p_power] := Evaluate(recursion[r + 1], [aps[i], b]); p_power *:= p; r +:= 1; end while; end for; Sort(~prime_powers); for pp in prime_powers do for k := 1 to Floor(prec/pp) do if GCD(k, pp) eq 1 then coeffs[pp*k] := coeffs[pp]*coeffs[k]; end if; end for; end for; return coeffs; end function; function qexpCoeffs() // To make the coeffs of the qexp of the newform in the Hecke field type "qexpCoeffs();" weight := 2; raw_aps := [[0], [0], [4], [0], [0], [-6], [8], [0], [0], [-4], [0], [-2], [-8], [0], [0], [-4], [0], [-10], [0], [0], [6], [0], [0], [16], [-18], [-20], [0], [0], [-6], [16], [0], [0], [8], [0], [20], [0], [22], [0], [0], [4], [0], [18], [0], [-14], [28], [0], [0], [0], [0], [-30], [-16], [0], [30], [0], [32], [0], [-20], [0], [18], [-32], [0], [-4], [0], [0], [26], [28], [0], [-18], [0], [-10], [16], [0], [0], [14], [0], [0], [20], [38], [-40], [6], [0], [-30], [0], [34], [0], [0], [40], [-42], [20], [0], [0], [0], [0], [0], [0], [0], [44], [-40], [0], [42], [0], [-28], [0], [-40], [0], [2], [0], [-16], [0], [10], [0], [-34], [-32], [0], [0], [8], [0], [0], [-44], [0], [-50], [-46], [52], [0], [0], [-52], [-30], [0], [0], [-54], [0], [0], [0], [18], [40], [50], [44], [0], [52], [-56], [0], [28], [0], [0], [-54], [0], [46], [-8], [0], [0], [-58], [32], [0], [0], [0], [0], [0], [-40], [-38], [20], [0], [56], [0], [0], [-8], [0], [0], [62]]; aps := ConvertToHeckeField(raw_aps); chi := MakeCharacter_288_a_Hecke(Universe(aps)); return ExtendMultiplicatively(weight, aps, chi); end function; // To make the newform (type ModFrm), type "MakeNewformModFrm_288_2_a_e();". // This may take a long time! To see verbose output, uncomment the SetVerbose lines below. // The precision argument determines an initial guess on how many Fourier coefficients to use. // This guess is increased enough to uniquely determine the newform. function MakeNewformModFrm_288_2_a_e(:prec:=1) chi := MakeCharacter_288_a(); f_vec := qexpCoeffs(); Kf := Universe(f_vec); // SetVerbose("ModularForms", true); // SetVerbose("ModularSymbols", true); S := CuspidalSubspace(ModularForms(chi, 2)); S := BaseChange(S, Kf); maxprec := NextPrime(997) - 1; while true do trunc_vec := Vector(Kf, [0] cat [f_vec[i]: i in [1..prec]]); B := Basis(S, prec + 1); S_basismat := Matrix([AbsEltseq(g): g in B]); if Rank(S_basismat) eq Min(NumberOfRows(S_basismat), NumberOfColumns(S_basismat)) then S_basismat := ChangeRing(S_basismat,Kf); f_lincom := Solution(S_basismat,trunc_vec); f := &+[f_lincom[i]*Basis(S)[i] : i in [1..#Basis(S)]]; return f; end if; error if prec eq maxprec, "Unable to distinguish newform within newspace"; prec := Min(Ceiling(1.25 * prec), maxprec); end while; end function; // To make the Hecke irreducible modular symbols subspace (type ModSym) // containing the newform, type "MakeNewformModSym_288_2_a_e();". // This may take a long time! To see verbose output, uncomment the SetVerbose line below. // The default sign is -1. You can change this with the optional parameter "sign". function MakeNewformModSym_288_2_a_e( : sign := -1) R := PolynomialRing(Rationals()); chi := MakeCharacter_288_a(); // SetVerbose("ModularSymbols", true); Snew := NewSubspace(CuspidalSubspace(ModularSymbols(chi,2,sign))); Vf := Kernel([<5,R![-4, 1]>,<7,R![0, 1]>],Snew); return Vf; end function;