// Make newform 1344.2.q.l in Magma, downloaded from the LMFDB on 29 March 2024. // To make the character of type GrpDrchElt, type "MakeCharacter_1344_q();" // To make the character of type GrpDrchElt with Codomain the HeckeField, type "MakeCharacter_1344_q_Hecke();" // To make the coeffs of the qexp of the newform in the Hecke field type "qexpCoeffs();" // To make the newform (type ModFrm), type "MakeNewformModFrm_1344_2_q_l();". // This may take a long time! To see verbose output, uncomment the SetVerbose lines below. // The precision argument determines an initial guess on how many Fourier coefficients to use. // This guess is increased enough to uniquely determine the newform. // To make the Hecke irreducible modular symbols subspace (type ModSym) // containing the newform, type "MakeNewformModSym_1344_2_q_l();". // This may take a long time! To see verbose output, uncomment the SetVerbose line below. // The default sign is -1. You can change this with the optional parameter "sign". function ConvertToHeckeField(input: pass_field := false, Kf := []) if not pass_field then poly := [1, -1, 1]; Kf := NumberField(Polynomial([elt : elt in poly])); AssignNames(~Kf, ["nu"]); end if; Rfbasis := [Kf.1^i : i in [0..Degree(Kf)-1]]; inp_vec := Vector(Rfbasis)*ChangeRing(Transpose(Matrix([[elt : elt in row] : row in input])),Kf); return Eltseq(inp_vec); end function; // To make the character of type GrpDrchElt, type "MakeCharacter_1344_q();" function MakeCharacter_1344_q() N := 1344; order := 3; char_gens := [127, 1093, 449, 577]; v := [3, 3, 3, 2]; // chi(gens[i]) = zeta^v[i] assert UnitGenerators(DirichletGroup(N)) eq char_gens; F := CyclotomicField(order); chi := DirichletCharacterFromValuesOnUnitGenerators(DirichletGroup(N,F),[F|F.1^e:e in v]); return MinimalBaseRingCharacter(chi); end function; // To make the character of type GrpDrchElt with Codomain the HeckeField, type "MakeCharacter_1344_q_Hecke();" function MakeCharacter_1344_q_Hecke(Kf) N := 1344; order := 3; char_gens := [127, 1093, 449, 577]; char_values := [[1, 0], [1, 0], [1, 0], [0, -1]]; assert UnitGenerators(DirichletGroup(N)) eq char_gens; values := ConvertToHeckeField(char_values : pass_field := true, Kf := Kf); // the value of chi on the gens as elements in the Hecke field F := Universe(values);// the Hecke field chi := DirichletCharacterFromValuesOnUnitGenerators(DirichletGroup(N,F),values); return chi; end function; function ExtendMultiplicatively(weight, aps, character) prec := NextPrime(NthPrime(#aps)) - 1; // we will able to figure out a_0 ... a_prec primes := PrimesUpTo(prec); prime_powers := primes; assert #primes eq #aps; log_prec := Floor(Log(prec)/Log(2)); // prec < 2^(log_prec+1) F := Universe(aps); FXY := PolynomialRing(F, 2); // 1/(1 - a_p T + p^(weight - 1) * char(p) T^2) = 1 + a_p T + a_{p^2} T^2 + ... R := PowerSeriesRing(FXY : Precision := log_prec + 1); recursion := Coefficients(1/(1 - X*T + Y*T^2)); coeffs := [F!0: i in [1..(prec+1)]]; coeffs[1] := 1; //a_1 for i := 1 to #primes do p := primes[i]; coeffs[p] := aps[i]; b := p^(weight - 1) * F!character(p); r := 2; p_power := p * p; //deals with powers of p while p_power le prec do Append(~prime_powers, p_power); coeffs[p_power] := Evaluate(recursion[r + 1], [aps[i], b]); p_power *:= p; r +:= 1; end while; end for; Sort(~prime_powers); for pp in prime_powers do for k := 1 to Floor(prec/pp) do if GCD(k, pp) eq 1 then coeffs[pp*k] := coeffs[pp]*coeffs[k]; end if; end for; end for; return coeffs; end function; function qexpCoeffs() // To make the coeffs of the qexp of the newform in the Hecke field type "qexpCoeffs();" weight := 2; raw_aps := [[0, 0], [1, -1], [0, -4], [2, 1], [-6, 6], [-5, 0], [-2, 2], [0, -1], [0, -6], [0, 0], [-3, 3], [0, 3], [-6, 0], [5, 0], [0, -4], [-6, 6], [6, -6], [0, -2], [-7, 7], [-16, 0], [3, -3], [0, 11], [12, 0], [0, -4], [-6, 0], [2, -2], [0, -11], [0, -10], [-15, 15], [-16, 0], [7, 0], [0, -6], [12, -12], [5, 0], [0, -4], [-8, 8], [10, -10], [0, -20], [8, 0], [0, 22], [0, 0], [-25, 0], [0, 0], [1, -1], [-18, 0], [20, -20], [12, 0], [-16, 0], [-22, 22], [0, -11], [0, 8], [-2, 0], [-10, 10], [-14, 0], [0, 12], [0, 0], [-2, 2], [0, 16], [1, -1], [6, 0], [11, -11], [12, 0], [11, 0], [-2, 2], [0, -31], [0, -20], [0, 5], [1, 0], [22, -22], [-26, 0], [4, -4], [0, -24], [27, -27], [0, -29], [27, 0], [0, 26], [-4, 4], [0, -21], [0, 2], [-13, 13], [-26, 0], [-17, 0], [0, 0], [-25, 0], [0, 24], [0, 26], [36, 0], [0, -25], [4, 0], [5, 0], [0, -8], [2, -2], [-1, 1], [8, 0], [0, -29], [-18, 0], [0, -24], [-24, 24], [0, 17], [0, 37], [28, 0], [-6, 6], [-24, 24], [0, -18], [-29, 29], [-23, 23], [40, 0], [0, 26], [20, -20], [-21, 0], [0, -5], [-46, 46], [-14, 0], [25, -25], [-28, 0], [-38, 38], [-23, 0], [10, -10], [0, 34], [6, 0], [3, -3], [-29, 0], [0, -12], [-18, 18], [0, -23], [-22, 0], [0, -6], [0, 30], [41, 0], [0, 21], [51, -51], [18, 0], [0, -7], [26, 0], [0, -50], [31, 0], [-22, 22], [-32, 32], [46, 0], [-8, 8], [28, 0], [0, 4], [-24, 24], [12, 0], [5, -5], [-12, 0], [33, 0], [-24, 24], [0, -52], [0, 54], [0, 2], [-42, 0], [7, 0], [0, 34], [-43, 43], [26, 0], [0, 43], [0, 36], [51, 0], [54, -54], [0, 30], [-6, 0], [53, 0], [0, 26], [-30, 30], [26, -26], [25, -25], [-5, 5], [-31, 0], [0, 12], [-8, 8], [-42, 0], [0, 36], [-5, 5], [-23, 23], [52, 0], [-45, 0], [-36, 36], [0, 0], [0, 7], [0, -31], [-20, 0], [35, 0], [0, -2], [-46, 46], [24, -24], [14, -14], [29, -29], [0, -41], [6, -6], [0, 19], [-52, 0], [0, 52], [0, -38], [-46, 46], [0, 0], [49, -49], [0, 54], [-6, 0], [0, -14], [-30, 30], [5, 0], [0, 22], [70, -70], [-54, 0], [26, -26], [0, -16], [0, -26], [52, 0], [28, -28], [0, -47], [-16, 0], [16, 0], [0, -14], [-50, 50], [0, -23], [8, -8], [12, -12], [0, 38], [-32, 0], [0, 5], [-29, 0], [0, 52], [0, -16], [-66, 0], [-42, 0], [0, 12], [34, -34], [0, -53], [0, -24], [17, -17], [-4, 4], [-67, 0], [38, -38], [-51, 0], [-64, 64], [0, -1], [0, 58], [-8, 0], [-44, 0], [76, -76], [0, -65], [9, -9], [0, 10], [-16, 0], [0, -10], [37, 0], [0, 0], [52, -52], [72, 0], [-29, 0], [0, -50], [-6, 6], [-23, 0], [4, -4], [0, 44], [49, -49], [-51, 51], [72, 0], [0, 2], [-13, 13], [44, 0], [-23, 23], [9, 0], [-10, 10], [0, 39], [22, 0], [12, 0], [80, 0], [30, -30], [0, 59], [-32, 32], [3, -3], [0, -41], [-62, 0], [0, -8], [0, -12], [51, -51], [0, 41], [0, -70], [72, -72], [-81, 81], [-74, 0], [-59, 0], [0, 52], [0, 42], [35, -35], [-28, 0], [17, -17], [-20, 0], [16, -16], [28, -28], [0, -12], [28, 0], [-71, 0], [-18, 18], [0, -23], [-50, 0], [0, -64], [-37, 0], [0, 50], [0, -30], [-40, 40]]; aps := ConvertToHeckeField(raw_aps); chi := MakeCharacter_1344_q_Hecke(Universe(aps)); return ExtendMultiplicatively(weight, aps, chi); end function; // To make the newform (type ModFrm), type "MakeNewformModFrm_1344_2_q_l();". // This may take a long time! To see verbose output, uncomment the SetVerbose lines below. // The precision argument determines an initial guess on how many Fourier coefficients to use. // This guess is increased enough to uniquely determine the newform. function MakeNewformModFrm_1344_2_q_l(:prec:=2) chi := MakeCharacter_1344_q(); f_vec := qexpCoeffs(); Kf := Universe(f_vec); // SetVerbose("ModularForms", true); // SetVerbose("ModularSymbols", true); S := CuspidalSubspace(ModularForms(chi, 2)); S := BaseChange(S, Kf); maxprec := NextPrime(1999) - 1; while true do trunc_vec := Vector(Kf, [0] cat [f_vec[i]: i in [1..prec]]); B := Basis(S, prec + 1); S_basismat := Matrix([AbsEltseq(g): g in B]); if Rank(S_basismat) eq Min(NumberOfRows(S_basismat), NumberOfColumns(S_basismat)) then S_basismat := ChangeRing(S_basismat,Kf); f_lincom := Solution(S_basismat,trunc_vec); f := &+[f_lincom[i]*Basis(S)[i] : i in [1..#Basis(S)]]; return f; end if; error if prec eq maxprec, "Unable to distinguish newform within newspace"; prec := Min(Ceiling(1.25 * prec), maxprec); end while; end function; // To make the Hecke irreducible modular symbols subspace (type ModSym) // containing the newform, type "MakeNewformModSym_1344_2_q_l();". // This may take a long time! To see verbose output, uncomment the SetVerbose line below. // The default sign is -1. You can change this with the optional parameter "sign". function MakeNewformModSym_1344_2_q_l( : sign := -1) R := PolynomialRing(Rationals()); chi := MakeCharacter_1344_q(); // SetVerbose("ModularSymbols", true); Snew := NewSubspace(CuspidalSubspace(ModularSymbols(chi,2,sign))); Vf := Kernel([<5,R![16, 4, 1]>,<11,R![36, 6, 1]>,<13,R![5, 1]>],Snew); return Vf; end function;