// Make newform 1274.2.h.i in Magma, downloaded from the LMFDB on 29 March 2024. // To make the character of type GrpDrchElt, type "MakeCharacter_1274_h();" // To make the character of type GrpDrchElt with Codomain the HeckeField, type "MakeCharacter_1274_h_Hecke();" // To make the coeffs of the qexp of the newform in the Hecke field type "qexpCoeffs();" // To make the newform (type ModFrm), type "MakeNewformModFrm_1274_2_h_i();". // This may take a long time! To see verbose output, uncomment the SetVerbose lines below. // The precision argument determines an initial guess on how many Fourier coefficients to use. // This guess is increased enough to uniquely determine the newform. // To make the Hecke irreducible modular symbols subspace (type ModSym) // containing the newform, type "MakeNewformModSym_1274_2_h_i();". // This may take a long time! To see verbose output, uncomment the SetVerbose line below. // The default sign is -1. You can change this with the optional parameter "sign". function ConvertToHeckeField(input: pass_field := false, Kf := []) if not pass_field then poly := [1, -1, 1]; Kf := NumberField(Polynomial([elt : elt in poly])); AssignNames(~Kf, ["nu"]); end if; Rfbasis := [Kf.1^i : i in [0..Degree(Kf)-1]]; inp_vec := Vector(Rfbasis)*ChangeRing(Transpose(Matrix([[elt : elt in row] : row in input])),Kf); return Eltseq(inp_vec); end function; // To make the character of type GrpDrchElt, type "MakeCharacter_1274_h();" function MakeCharacter_1274_h() N := 1274; order := 3; char_gens := [885, 197]; v := [2, 1]; // chi(gens[i]) = zeta^v[i] assert UnitGenerators(DirichletGroup(N)) eq char_gens; F := CyclotomicField(order); chi := DirichletCharacterFromValuesOnUnitGenerators(DirichletGroup(N,F),[F|F.1^e:e in v]); return MinimalBaseRingCharacter(chi); end function; // To make the character of type GrpDrchElt with Codomain the HeckeField, type "MakeCharacter_1274_h_Hecke();" function MakeCharacter_1274_h_Hecke(Kf) N := 1274; order := 3; char_gens := [885, 197]; char_values := [[-1, 1], [0, -1]]; assert UnitGenerators(DirichletGroup(N)) eq char_gens; values := ConvertToHeckeField(char_values : pass_field := true, Kf := Kf); // the value of chi on the gens as elements in the Hecke field F := Universe(values);// the Hecke field chi := DirichletCharacterFromValuesOnUnitGenerators(DirichletGroup(N,F),values); return chi; end function; function ExtendMultiplicatively(weight, aps, character) prec := NextPrime(NthPrime(#aps)) - 1; // we will able to figure out a_0 ... a_prec primes := PrimesUpTo(prec); prime_powers := primes; assert #primes eq #aps; log_prec := Floor(Log(prec)/Log(2)); // prec < 2^(log_prec+1) F := Universe(aps); FXY := PolynomialRing(F, 2); // 1/(1 - a_p T + p^(weight - 1) * char(p) T^2) = 1 + a_p T + a_{p^2} T^2 + ... R := PowerSeriesRing(FXY : Precision := log_prec + 1); recursion := Coefficients(1/(1 - X*T + Y*T^2)); coeffs := [F!0: i in [1..(prec+1)]]; coeffs[1] := 1; //a_1 for i := 1 to #primes do p := primes[i]; coeffs[p] := aps[i]; b := p^(weight - 1) * F!character(p); r := 2; p_power := p * p; //deals with powers of p while p_power le prec do Append(~prime_powers, p_power); coeffs[p_power] := Evaluate(recursion[r + 1], [aps[i], b]); p_power *:= p; r +:= 1; end while; end for; Sort(~prime_powers); for pp in prime_powers do for k := 1 to Floor(prec/pp) do if GCD(k, pp) eq 1 then coeffs[pp*k] := coeffs[pp]*coeffs[k]; end if; end for; end for; return coeffs; end function; function qexpCoeffs() // To make the coeffs of the qexp of the newform in the Hecke field type "qexpCoeffs();" weight := 2; raw_aps := [[0, 1], [-1, 0], [3, -3], [0, 0], [0, 0], [-4, 3], [6, -6], [4, 0], [0, -3], [-6, 6], [0, -10], [0, -8], [0, 0], [0, -8], [6, -6], [0, -12], [3, -3], [-11, 0], [2, 0], [0, 3], [0, 2], [4, -4], [0, 0], [0, -6], [0, 2], [6, 0], [14, -14], [0, 18], [0, 16], [0, 18], [-11, 11], [15, -15], [-3, 3], [0, -16], [0, 0], [0, 1], [0, 2], [20, 0], [-12, 12], [-9, 0], [6, 0], [-5, 0], [-24, 0], [5, 0], [-12, 12], [14, -14], [4, -4], [8, -8], [-15, 15], [-22, 22], [3, -3], [21, 0], [-28, 28], [0, 3], [0, -6], [-27, 0], [9, -9], [0, 2], [-26, 26], [18, 0], [31, 0], [0, -6], [13, 0], [0, -6], [8, -8], [12, -12], [-10, 0], [14, 0], [24, -24], [29, -29], [6, 0], [9, -9], [10, 0], [32, 0], [28, -28], [6, 0], [0, 30], [7, 0], [0, -6], [-22, 22], [0, 0], [26, 0], [-33, 0], [0, -4], [0, 14], [-18, 18], [0, -9], [0, -29], [0, 21], [-31, 0], [-3, 3], [-30, 0], [13, -13], [-12, 12], [22, -22], [0, 42], [0, -15], [0, -36], [0, -1], [-38, 38], [20, 0], [24, 0], [-36, 36], [0, 45], [0, -8], [0, -28], [3, -3], [0, 0], [0, -3], [26, -26], [10, 0], [-22, 0], [0, 3], [0, -37], [0, -5], [9, -9], [0, 41], [36, 0], [0, -30], [0, -6], [-23, 0], [10, -10], [-51, 51], [24, -24], [0, -1], [-12, 0], [-10, 0], [48, 0], [52, 0], [35, -35], [-16, 0], [-48, 48], [0, -17], [52, -52], [-12, 0], [-10, 10], [-30, 30], [53, -53], [0, -15], [-42, 0], [19, 0], [0, -12], [13, -13], [24, 0], [25, 0], [0, -54], [-17, 0], [0, -18], [-4, 4], [57, -57], [-22, 0], [-6, 6], [20, 0], [0, 12], [14, 0], [21, 0], [-7, 0], [-18, 0], [-8, 0], [0, 15], [0, 42], [0, 15], [-16, 0], [-3, 0], [39, 0], [0, -30], [17, 0], [35, -35], [-7, 0], [-3, 3], [0, 48], [0, -31], [-27, 0], [-17, 17], [0, 56], [0, 0], [-38, 38], [0, 12], [38, -38], [0, -1], [7, -7], [-12, 0], [-28, 0], [-42, 42], [33, 0], [21, -21], [0, 52], [0, 11], [0, -11], [48, -48], [16, 0], [0, 12], [-2, 2], [0, -18], [-48, 48], [-18, 0], [0, -50], [44, 0], [-60, 0], [24, -24], [36, -36], [0, -46], [0, 50], [0, 2], [12, -12], [45, 0], [-22, 22], [24, 0], [9, -9], [-13, 13], [0, -11], [6, 0], [16, -16], [39, 0], [6, -6], [32, -32], [0, 61], [60, -60], [0, 27], [-42, 0], [0, -32], [-14, 0], [-42, 42], [8, 0], [-33, 33], [74, 0], [0, -24], [-21, 21], [-44, 0], [-18, 18], [-4, 0], [-44, 0], [-68, 68], [0, -27], [1, 0], [0, -30], [-14, 0], [0, -36], [0, -30], [18, -18], [66, 0], [0, -4], [8, -8], [0, 16], [0, 42], [-42, 42], [0, -52], [15, 0], [34, -34], [-27, 27], [-32, 32], [0, 6], [0, -9], [-22, 22], [0, 66], [12, 0], [28, -28], [37, 0], [33, 0], [-20, 0], [0, -11], [18, -18], [0, -70], [2, -2], [-12, 12], [1, 0], [0, -18], [-30, 0], [0, 4], [30, -30], [5, -5], [0, -32], [-8, 0], [-7, 0], [0, 2], [0, -70], [-42, 0], [0, 10], [59, 0], [48, 0], [24, 0], [-40, 0], [24, 0], [-37, 37], [41, -41], [0, 0], [0, -65], [42, 0], [-4, 4], [0, -18], [-66, 0], [0, 0], [0, -18], [0, -12], [0, -26], [0, -63], [-58, 58], [9, -9], [0, 27], [-31, 31], [40, 0], [-36, 36], [11, 0]]; aps := ConvertToHeckeField(raw_aps); chi := MakeCharacter_1274_h_Hecke(Universe(aps)); return ExtendMultiplicatively(weight, aps, chi); end function; // To make the newform (type ModFrm), type "MakeNewformModFrm_1274_2_h_i();". // This may take a long time! To see verbose output, uncomment the SetVerbose lines below. // The precision argument determines an initial guess on how many Fourier coefficients to use. // This guess is increased enough to uniquely determine the newform. function MakeNewformModFrm_1274_2_h_i(:prec:=2) chi := MakeCharacter_1274_h(); f_vec := qexpCoeffs(); Kf := Universe(f_vec); // SetVerbose("ModularForms", true); // SetVerbose("ModularSymbols", true); S := CuspidalSubspace(ModularForms(chi, 2)); S := BaseChange(S, Kf); maxprec := NextPrime(1999) - 1; while true do trunc_vec := Vector(Kf, [0] cat [f_vec[i]: i in [1..prec]]); B := Basis(S, prec + 1); S_basismat := Matrix([AbsEltseq(g): g in B]); if Rank(S_basismat) eq Min(NumberOfRows(S_basismat), NumberOfColumns(S_basismat)) then S_basismat := ChangeRing(S_basismat,Kf); f_lincom := Solution(S_basismat,trunc_vec); f := &+[f_lincom[i]*Basis(S)[i] : i in [1..#Basis(S)]]; return f; end if; error if prec eq maxprec, "Unable to distinguish newform within newspace"; prec := Min(Ceiling(1.25 * prec), maxprec); end while; end function; // To make the Hecke irreducible modular symbols subspace (type ModSym) // containing the newform, type "MakeNewformModSym_1274_2_h_i();". // This may take a long time! To see verbose output, uncomment the SetVerbose line below. // The default sign is -1. You can change this with the optional parameter "sign". function MakeNewformModSym_1274_2_h_i( : sign := -1) R := PolynomialRing(Rationals()); chi := MakeCharacter_1274_h(); // SetVerbose("ModularSymbols", true); Snew := NewSubspace(CuspidalSubspace(ModularSymbols(chi,2,sign))); Vf := Kernel([<3,R![1, 1]>,<5,R![9, -3, 1]>,<11,R![0, 1]>],Snew); return Vf; end function;