// Make newform 1134.2.g.f in Magma, downloaded from the LMFDB on 28 March 2024. // To make the character of type GrpDrchElt, type "MakeCharacter_1134_g();" // To make the character of type GrpDrchElt with Codomain the HeckeField, type "MakeCharacter_1134_g_Hecke();" // To make the coeffs of the qexp of the newform in the Hecke field type "qexpCoeffs();" // To make the newform (type ModFrm), type "MakeNewformModFrm_1134_2_g_f();". // This may take a long time! To see verbose output, uncomment the SetVerbose lines below. // The precision argument determines an initial guess on how many Fourier coefficients to use. // This guess is increased enough to uniquely determine the newform. // To make the Hecke irreducible modular symbols subspace (type ModSym) // containing the newform, type "MakeNewformModSym_1134_2_g_f();". // This may take a long time! To see verbose output, uncomment the SetVerbose line below. // The default sign is -1. You can change this with the optional parameter "sign". function ConvertToHeckeField(input: pass_field := false, Kf := []) if not pass_field then poly := [1, -1, 1]; Kf := NumberField(Polynomial([elt : elt in poly])); AssignNames(~Kf, ["nu"]); end if; Rfbasis := [Kf.1^i : i in [0..Degree(Kf)-1]]; inp_vec := Vector(Rfbasis)*ChangeRing(Transpose(Matrix([[elt : elt in row] : row in input])),Kf); return Eltseq(inp_vec); end function; // To make the character of type GrpDrchElt, type "MakeCharacter_1134_g();" function MakeCharacter_1134_g() N := 1134; order := 3; char_gens := [407, 325]; v := [3, 1]; // chi(gens[i]) = zeta^v[i] assert UnitGenerators(DirichletGroup(N)) eq char_gens; F := CyclotomicField(order); chi := DirichletCharacterFromValuesOnUnitGenerators(DirichletGroup(N,F),[F|F.1^e:e in v]); return MinimalBaseRingCharacter(chi); end function; // To make the character of type GrpDrchElt with Codomain the HeckeField, type "MakeCharacter_1134_g_Hecke();" function MakeCharacter_1134_g_Hecke(Kf) N := 1134; order := 3; char_gens := [407, 325]; char_values := [[1, 0], [0, -1]]; assert UnitGenerators(DirichletGroup(N)) eq char_gens; values := ConvertToHeckeField(char_values : pass_field := true, Kf := Kf); // the value of chi on the gens as elements in the Hecke field F := Universe(values);// the Hecke field chi := DirichletCharacterFromValuesOnUnitGenerators(DirichletGroup(N,F),values); return chi; end function; function ExtendMultiplicatively(weight, aps, character) prec := NextPrime(NthPrime(#aps)) - 1; // we will able to figure out a_0 ... a_prec primes := PrimesUpTo(prec); prime_powers := primes; assert #primes eq #aps; log_prec := Floor(Log(prec)/Log(2)); // prec < 2^(log_prec+1) F := Universe(aps); FXY := PolynomialRing(F, 2); // 1/(1 - a_p T + p^(weight - 1) * char(p) T^2) = 1 + a_p T + a_{p^2} T^2 + ... R := PowerSeriesRing(FXY : Precision := log_prec + 1); recursion := Coefficients(1/(1 - X*T + Y*T^2)); coeffs := [F!0: i in [1..(prec+1)]]; coeffs[1] := 1; //a_1 for i := 1 to #primes do p := primes[i]; coeffs[p] := aps[i]; b := p^(weight - 1) * F!character(p); r := 2; p_power := p * p; //deals with powers of p while p_power le prec do Append(~prime_powers, p_power); coeffs[p_power] := Evaluate(recursion[r + 1], [aps[i], b]); p_power *:= p; r +:= 1; end while; end for; Sort(~prime_powers); for pp in prime_powers do for k := 1 to Floor(prec/pp) do if GCD(k, pp) eq 1 then coeffs[pp*k] := coeffs[pp]*coeffs[k]; end if; end for; end for; return coeffs; end function; function qexpCoeffs() // To make the coeffs of the qexp of the newform in the Hecke field type "qexpCoeffs();" weight := 2; raw_aps := [[0, 1], [0, 0], [0, -3], [2, 1], [-3, 3], [5, 0], [3, -3], [0, -5], [0, -3], [3, 0], [4, -4], [0, 7], [9, 0], [11, 0], [0, 0], [-3, 3], [12, -12], [0, -2], [4, -4], [0, 0], [-11, 11], [0, -8], [-3, 0], [0, 15], [-1, 0], [-3, 3], [0, -5], [0, -15], [7, -7], [-15, 0], [-16, 0], [0, 3], [3, -3], [5, 0], [0, -3], [-11, 11], [-14, 14], [0, -17], [-3, 0], [0, 6], [3, -3], [-10, 0], [0, 12], [-14, 14], [6, 0], [7, -7], [5, 0], [17, 0], [9, -9], [0, -17], [0, 27], [-27, 0], [-23, 23], [-12, 0], [0, 15], [-9, 9], [21, -21], [0, 13], [7, -7], [-3, 0], [-8, 8], [27, 0], [-28, 0], [-24, 24], [0, -14], [0, 30], [0, -20], [-25, 0], [-12, 12], [5, 0], [-9, 9], [0, 15], [1, -1], [0, -17], [-16, 0], [0, -15], [9, -9], [0, -29], [0, 27], [22, -22], [3, 0], [-31, 0], [-3, 3], [14, 0], [0, -8], [0, 0], [-30, 0], [0, 34], [-9, 0], [35, 0], [0, -3], [-9, 9], [31, -31], [39, 0], [0, -11], [12, 0], [0, -27], [3, -3], [0, 7], [0, -17], [11, 0], [-3, 3], [-12, 12], [0, 30], [-20, 20], [-11, 11], [33, 0], [0, -21], [0, 0], [-1, 0], [0, 43], [31, -31], [-3, 0], [19, -19], [8, 0], [-45, 45], [29, 0], [-3, 3], [0, 9], [-39, 0], [-14, 14], [11, 0], [0, 6], [-33, 33], [0, -20], [-6, 0], [0, 10], [0, 39], [5, 0], [0, -41], [-47, 47], [-3, 0], [0, -29], [14, 0], [0, 3], [-1, 0], [21, -21], [-44, 44], [27, 0], [39, -39], [20, 0], [0, -54], [40, -40], [24, 0], [-41, 41], [39, 0], [17, 0], [-33, 33], [0, -11], [0, 15], [0, 43], [-6, 0], [-4, 0], [0, -39], [-17, 17], [-9, 0], [0, 1], [0, -18], [-34, 0], [54, -54], [0, -12], [6, 0], [-49, 0], [0, -27], [6, -6], [-21, 21], [-29, 29], [-41, 41], [-34, 0], [0, -39], [-51, 51], [-31, 0], [0, -3], [-23, 23], [40, -40], [-3, 0], [-1, 0], [-51, 51], [-16, 0], [0, 34], [0, 40], [45, 0], [29, 0], [0, -33], [-12, 12], [9, -9], [-41, 41], [-5, 5], [0, 13], [-3, 3], [0, 13], [-51, 0], [0, -17], [0, 6], [-57, 57], [54, -54], [10, -10], [0, 10], [-39, 0], [0, 15], [54, -54], [17, 0], [0, -5], [25, -25], [-24, 0], [45, -45], [0, -47], [0, 39], [21, 0], [-20, 20], [0, 25], [-57, 0], [-43, 0], [0, 36], [-24, 24], [0, 10], [40, -40], [63, -63], [0, -57], [-69, 0], [0, 67], [-25, 0], [0, -9], [0, 61], [63, 0], [53, 0], [0, -42], [45, -45], [0, -32], [0, 0], [-2, 2], [25, -25], [-37, 0], [-42, 42], [-1, 0], [27, -27], [0, 1], [0, 9], [-21, 0], [-12, 0], [45, -45], [0, 43], [40, -40], [0, 67], [-51, 0], [0, -24], [-16, 0], [-60, 60], [-68, 68], [12, 0], [65, 0], [0, 39], [48, -48], [-37, 0], [33, -33], [0, 33], [-65, 65], [-17, 17], [-78, 0], [0, 25], [-11, 11], [33, 0], [-14, 14], [2, 0], [-18, 18], [0, -8], [-6, 0], [-63, 0], [41, 0], [6, -6], [0, -29], [1, -1], [73, -73], [0, 31], [23, 0], [0, -59], [0, -45], [19, -19], [0, -59], [0, 60], [24, -24], [-32, 32], [-9, 0], [-19, 0], [0, 37], [0, -21], [25, -25], [15, 0], [-35, 35], [66, 0], [-51, 51], [27, -27], [0, -21], [-81, 0], [-31, 0], [54, -54], [0, 64], [75, 0], [0, 21], [-73, 0], [0, -23], [0, 69], [43, -43]]; aps := ConvertToHeckeField(raw_aps); chi := MakeCharacter_1134_g_Hecke(Universe(aps)); return ExtendMultiplicatively(weight, aps, chi); end function; // To make the newform (type ModFrm), type "MakeNewformModFrm_1134_2_g_f();". // This may take a long time! To see verbose output, uncomment the SetVerbose lines below. // The precision argument determines an initial guess on how many Fourier coefficients to use. // This guess is increased enough to uniquely determine the newform. function MakeNewformModFrm_1134_2_g_f(:prec:=2) chi := MakeCharacter_1134_g(); f_vec := qexpCoeffs(); Kf := Universe(f_vec); // SetVerbose("ModularForms", true); // SetVerbose("ModularSymbols", true); S := CuspidalSubspace(ModularForms(chi, 2)); S := BaseChange(S, Kf); maxprec := NextPrime(1999) - 1; while true do trunc_vec := Vector(Kf, [0] cat [f_vec[i]: i in [1..prec]]); B := Basis(S, prec + 1); S_basismat := Matrix([AbsEltseq(g): g in B]); if Rank(S_basismat) eq Min(NumberOfRows(S_basismat), NumberOfColumns(S_basismat)) then S_basismat := ChangeRing(S_basismat,Kf); f_lincom := Solution(S_basismat,trunc_vec); f := &+[f_lincom[i]*Basis(S)[i] : i in [1..#Basis(S)]]; return f; end if; error if prec eq maxprec, "Unable to distinguish newform within newspace"; prec := Min(Ceiling(1.25 * prec), maxprec); end while; end function; // To make the Hecke irreducible modular symbols subspace (type ModSym) // containing the newform, type "MakeNewformModSym_1134_2_g_f();". // This may take a long time! To see verbose output, uncomment the SetVerbose line below. // The default sign is -1. You can change this with the optional parameter "sign". function MakeNewformModSym_1134_2_g_f( : sign := -1) R := PolynomialRing(Rationals()); chi := MakeCharacter_1134_g(); // SetVerbose("ModularSymbols", true); Snew := NewSubspace(CuspidalSubspace(ModularSymbols(chi,2,sign))); Vf := Kernel([<5,R![9, 3, 1]>,<11,R![9, 3, 1]>,<17,R![9, -3, 1]>,<23,R![9, 3, 1]>],Snew); return Vf; end function;