# Stored data for newform 961.2.c.f, downloaded from the LMFDB on 27 March 2025. {"Nk2": 3844, "analytic_conductor": 7.673623634245045, "analytic_rank": 0, "analytic_rank_proved": true, "char_conductor": 31, "char_degree": 2, "char_is_minimal": false, "char_is_real": false, "char_orbit_index": 3, "char_orbit_label": "c", "char_order": 3, "char_parity": 1, "char_values": [961, 3, [3], [2]], "cm_discs": [], "conrey_index": 439, "dim": 4, "field_disc": 225, "field_disc_factorization": [[3, 2], [5, 2]], "field_poly": [1, 1, 2, -1, 1], "field_poly_is_cyclotomic": false, "field_poly_is_real_cyclotomic": false, "field_poly_root_of_unity": 0, "has_non_self_twist": 1, "hecke_cutters": [[2, [-1, -1, 1]], [3, [1, -1, 1]]], "hecke_orbit": 6, "hecke_orbit_code": 22518135609361345, "hecke_ring_generator_nbound": 3, "hecke_ring_index": 1, "hecke_ring_index_factorization": [], "hecke_ring_index_proved": true, "inner_twist_count": 2, "inner_twists": [[1, 1, 1, 1, 1, 1, 1], [1, 1, 31, 3, 1, 3, 0]], "is_cm": false, "is_largest": false, "is_maximal": false, "is_polredabs": true, "is_rm": false, "is_self_dual": false, "is_self_twist": false, "is_twist_minimal": false, "label": "961.2.c.f", "level": 961, "level_is_powerful": true, "level_is_prime": false, "level_is_prime_power": true, "level_is_prime_square": true, "level_is_square": true, "level_is_squarefree": false, "level_primes": [31], "level_radical": 31, "minimal_twist": "31.2.d.a", "nf_label": "4.0.225.1", "prim_orbit_index": 3, "qexp_display": "q-\\beta _{2}q^{2}+(1+\\beta _{3})q^{3}+(-1-\\beta _{2})q^{4}+\\cdots", "related_objects": [], "relative_dim": 2, "rm_discs": [], "sato_tate_group": "1.2.3.c3", "self_twist_discs": [], "self_twist_type": 0, "space_label": "961.2.c", "trace_display": [2, 2, 3, -6], "trace_hash": 708633982096575546, "trace_moments": [{"__RealLiteral__": 0, "data": "0.006", "prec": 17}, {"__RealLiteral__": 0, "data": "3.811", "prec": 17}, {"__RealLiteral__": 0, "data": "0.052", "prec": 17}, {"__RealLiteral__": 0, "data": "58.770", "prec": 20}, {"__RealLiteral__": 0, "data": "17.218", "prec": 20}, {"__RealLiteral__": 0, "data": "1623.834", "prec": 27}], "trace_zratio": {"__RealLiteral__": 0, "data": "0.022", "prec": 17}, "traces": [0, 4, 2, 2, -2, 3, 1, -6, 0, 4, -1, 6, -1, -3, -3, 6, -6, 4, 2, -10, -4, 6, 8, -4, 0, 3, 6, 20, 3, -30, -2, 0, -18, 12, 7, -18, -2, 4, -5, -6, 5, -4, 3, 7, 2, -6, 18, -18, -3, -4, 9, -4, 9, 12, 10, -4, 0, 10, -10, -10, -8, 8, 0, -24, 8, 12, 16, 4, 3, -2, 6, 11, 0, -3, 7, -3, 5, -36, 12, 0, 3, -2, 8, -3, -3, 2, 1, -15, -10, -30, 2, 18, 22, 0, -14, -30, -9, -48, -2, -12, 6, 28, -7, 7, -15, -9, -9, 9, -10, 20, -2, -4, 9, -3, 5, -13, 20, 6, 5, 12, 10, -6, 44, -8, 0, 24, -12, -16, 50, -7, -9, 11, 4, -30, -3, 15, -10, 4, 9, 10, 24, -9, 18, -6, -6, -25, -24, -8, 3, 5, -9, -2, 0, 16, -48, 0, 18, 12, 0, 24, -16, 6, -1, -24, 12, 4, -14, 14, 0, -1, 6, -40, -6, -13, -5, 9, -24, 10, -20, -15, 8, -34, -36, 4, -40, 2, 0, 44, 4, -30, 10, 21, 4, 7, -54, -12, 2, -6, -16, 40, -15, 8, 24, 45, -3, 16, 11, -4, -18, -60, 3, 16, -21, 22, 17, 26, 0, 0, 70, -6, 2, 18, -7, 12, 27, 12, -9, -1, -5, 10, 11, -18, -10, 26, -12, -11, 15, 0, 21, 0, 6, 26, -33, 32, 36, 6, 16, 30, 0, -6, 2, 16, 12, 14, -3, 1, 14, 24, -1, 12, -21, -30, 18, 6, -20, -33, -15, -15, -7, 5, -5, -2, -21, 9, -8, 48, 11, 22, -10, 0, -30, 18, -7, -14, 7, -15, -18, 24, -18, 16, 10, -24, -21, 12, -4, -50, -10, 30, -30, 33, -6, 21, 84, 14, 15, -14, 28, -1, -12, 14, 0, 48, -30, 2, -24, -18, 0, -16, -18, -40, 1, -9, -27, 20, 1, 36, 18, 10, -20, 27, 2, 11, -11, 16, 2, -11, -9, -18, 22, -6, 4, 0, -20, -60, 5, -26, -19, 24, 10, -40, 27, -15, -22, 67, -5, -4, 10, 24, 20, 35, -10, -12, -17, 6, -54, -18, 22, 39, -54, 8, 6, -72, 0, -64, 72, 12, 10, 30, -15, 10, 40, 16, -2, 27, 25, -12, 6, 28, -6, 0, 9, 16, 0, -11, 27, 0, -4, -46, 5, -60, -27, -12, -6, 0, -4, -6, 15, 44, 10, -10, -12, 8, 4, -30, 18, -8, 21, 5, -80, 0, 12, -34, 8, -18, 30, -21, 36, -12, 8, 6, -12, -54, -30, 56, 0, -50, 50, 10, -48, -30, 0, 8, 24, 42, -3, -20, 21, -5, -12, -20, 36, -8, -6, -1, -48, 36, 0, 22, 0, 20, 24, -42, -24, -44, 30, 0, -42, 12, -18, -24, 2, 6, -20, 32, 0, 15, 9, -24, -30, 0, -32, 18, 23, -6, -27, -21, 16, 19, -80, -12, -2, 6, 24, -25, -60, -16, 0, -66, -28, -15, -22, -14, 28, -33, 0, 16, 32, 1, 13, 15, 3, 18, -48, -50, 42, -3, 6, -32, 21, -26, 30, -4, -10, 56, 7, 18, 58, 0, -48, -8, 21, -40, 15, -36, -10, 2, 10, 15, 5, 12, -20, -44, -46, -68, -13, -15, -18, 34, -12, 8, 84, 75, -20, 0, -24, 1, -20, 72, 0, -36, -18, 22, -56, -3, 2, -3, -52, -6, -25, -40, 5, -14, -12, 42, -48, 27, 8, -31, -12, -7, 35, 18, -27, -6, 45, 48, 1, -8, 4, 0, 30, -12, -21, 96, 40, -3, -35, 80, -6, -35, 15, -44, 3, -8, 86, 42, 12, 24, 45, -45, 18, 6, 12, -68, 12, -16, 60, 24, 22, -160, 0, -20, 4, 45, -36, 8, 6, -30, -36, -18, 6, 51, 0, -16, 32, -58, -42, -6, -50, -22, 35, 71, -17, 46, -33, 13, 35, -48, 0, -20, 18, 0, 42, 96, 35, 8, -24, 6, 21, -30, -2, 31, 43, 9, 25, 45, 28, 50, -12, -12, 7, 52, -27, -18, -114, 15, 23, -26, -18, 72, -10, -2, 0, 76, 20, -16, -30, -10, -3, 63, 22, 46, -6, -36, 57, 15, -5, 24, 10, 13, 18, 31, 30, 20, 22, -22, 36, -42, -15, 30, -7, 0, 10, 0, 42, 12, 35, 0, 0, 85, -6, -42, -6, -26, 17, -15, 33, -6, 90, 52, 21, -9, 18, -38, -18, -6, 38, -2, -16, -30, 4, 15, 54, -54, 0, 80, -102, 6, 28, 27, 1, 26, 42, -16, -45, -44, 15, -46, -25, 28, -50, 31, 3, -30, -23, 2, 6, 90, 7, 65, -6, 48, -1, -54, 4, 0, 60, 24, -65, 40, 21, -58, 23, -150, 6, 24, -18, -76, 33, 3, 0, 18, 20, 54, -38, 33, -35, -36, -30, -23, -6, -30, 114, 54, -14, 78, 0, 10, -20, -85, 2, -14, -30, -1, 72, -33, 21, 35, -30, 18, -28, -112, -16, -28, -15, 24, 15, -21, 22, -60, 11, 11, 9, -16, -5, 52, -20, 0, -20, 0, -15, 114, -22, 9, -8, -48, -14, -18, 27, -7, -33, 16, 14, 16, -66, -30, -25, -6, 18, -100, -38, 12, -22, -43, -90, 7, 88, 32, 0, 0, 20, 21, -120, -48, -45, -36, -42, -46, 45, -12, 6, -14, 4, -4, 6, -25, -24, 9, 10, -48, 5, -12, 9, 45, 30, -100, -75, 66, -140, 0, 24, -12, -24, 42, 15, 51, 42, 82, -47, 28, -27, 6, -15, 34, 106, -28, -10, 33, 35, -60, -35, 1, -116, -21, -6, -21, 68, -14, 140, 0, 0, 40, -68, 24, 166, 8, 30, 4, 18, -2, 13, -84, -12, 44, -15, -90, 36, 14, 0, 63, 45, 16, -30, 66, 18, -44, -30, -80, -20, -24, 2, 0, 24, 36, -3, 16, 27, -56, 60, 40, -3, 21, -16, -15, 82, 18, -132, 92, 9, -50, -8, 20, -52, -13, -40, 39, -45, -27, -90, -17, -8, -2, 0, 22, -108, -75, -22, -26, -15, 20, 20], "weight": 2, "weight_parity": 1, "id": null, "artin_degree": null, "artin_field": null, "artin_field_label": null, "artin_image": null, "atkin_lehner_eigenvals": null, "atkin_lehner_string": null, "embedded_related_objects": null, "fricke_eigenval": null, "projective_field": null, "projective_field_label": null, "projective_image": null, "projective_image_type": null, "qexp": [[0, 0, 0, 0], [1, 0, 0, 0], [0, 0, -1, 0], [1, 0, 0, 1], [-1, 0, -1, 0], [0, 1, 1, -2], [0, 1, 0, 0], [-3, 0, 0, -3], [1, 0, 2, 0], [0, 0, 0, -2], [0, -1, -1, 1], [0, -2, -2, -2], [-1, 1, 0, -1], [0, -3, -3, 3], [0, -3, 0, 0], [2, 0, 1, 0], [0, 0, 3, 0], [1, 2, 0, 1], [0, -2, -2, 0], [-5, 0, 0, -5], [0, -2, -2, 3], [0, 0, 0, -3], [0, -4, -4, -2], [-3, 0, -4, 0], [1, -2, 0, 1], [0, 3, 0, 0], [0, 0, 0, -3], [5, 0, 0, 0], [3, -3, 0, 3], [-8, 0, -1, 0], [-1, 0, -1, 0], [0, 0, 0, 0], [-5, 0, -1, 0], [2, 0, -2, 0], [2, 3, 0, 2], [-6, 0, -3, 0], [0, -2, -2, 2], [1, 2, 0, 1], [0, -5, 0, 0], [-3, 0, -3, 0], [0, 3, 3, -4], [0, -4, -4, 4], [0, -3, -3, 0], [4, -1, 0, 4], [0, -2, -2, 0], [-4, 2, 0, -4], [4, 0, -1, 0], [-4, 0, 1, 0], [0, -3, 0, 0], [0, 0, 0, 2], [3, 3, 0, 3], [0, 2, 2, 1], [0, 3, 3, -6], [0, 6, 6, -9], [0, 0, -5, 0], [-2, 0, 0, -2], [-3, 6, 0, -3], [0, 0, 0, -5], [1, 0, 7, 0], [-7, 4, 0, -7], [-3, 0, -2, 0], [-2, 0, -8, 0], [0, 0, 0, 0], [-6, 0, 0, 0], [1, 0, -2, 0], [9, -6, 0, 9], [2, 0, -4, 0], [0, 2, 2, -3], [1, 1, 0, 1], [-3, 4, 0, -3], [3, 0, 3, 0], [0, -5, -5, -3], [0, 4, 4, -2], [0, 9, 9, -3], [2, 3, 0, 2], [0, 3, 3, 0], [5, -5, 0, 5], [-6, 0, 6, 0], [3, 0, 0, 0], [0, 0, 0, 0], [0, 3, 3, -3], [-1, 0, 0, -1], [0, 0, 0, -4], [0, 5, 5, -1], [0, -3, -3, 3], [0, 0, -1, 0], [-1, 3, 0, -1], [-8, 1, 0, -8], [0, 6, 6, 2], [-7, 0, 1, 0], [2, -2, 0, 2], [9, 0, 9, 0], [7, 0, 3, 0], [0, 0, 0, 0], [-1, 0, 5, 0], [-10, 0, -5, 0], [-5, 1, 0, -5], [-9, 0, 6, 0], [0, 2, 2, 0], [-4, -4, 0, -4], [3, 0, 0, 3]]}