# Stored data for newform 91.2.f.b, downloaded from the LMFDB on 23 March 2023. {"level_primes": [7, 13], "is_polredabs": true, "sato_tate_group": "1.2.3.c3", "rm_discs": [], "conrey_indexes": [22, 29], "cm_discs": [], "trace_hash": 783780718442138934, "level_radical": 91, "hecke_ring_index_proved": true, "self_twist_type": 0, "related_objects": [], "prim_orbit_index": 3, "is_cm": false, "hecke_orbit": 2, "analytic_conductor": 0.7266386583936515, "inner_twist_count": 2, "field_disc_factorization": [[2, 4], [3, 2]], "is_rm": false, "char_order": 3, "level_is_square": false, "weight_parity": 1, "label": "91.2.f.b", "field_poly_is_real_cyclotomic": false, "is_self_twist": false, "is_twist_minimal": true, "minimal_twist": "91.2.f.b", "field_poly_is_cyclotomic": true, "dim": 4, "trace_zratio": {"__RealLiteral__": 0, "data": "0.019", "prec": 17}, "traces": [0, 4, 0, -2, -2, 0, -6, -2, 0, -2, -6, -6, 4, 4, 0, -6, 10, 12, 24, -4, 0, 4, 6, -6, 6, -8, -18, 16, -2, 6, -6, -4, 0, 0, -12, 0, -2, 14, 0, -14, -12, 0, -6, -10, 12, -12, -6, 24, 10, -2, 0, -36, -8, -12, 0, 6, 0, 8, 0, -18, 12, 20, -18, -2, 4, 18, 24, 2, 12, -12, 12, -12, 12, 8, 0, 4, -4, 12, -24, 44, 0, -2, 18, 12, -2, 6, -36, 6, -6, -12, 12, -8, 12, -16, -24, 0, -36, 8, 0, -12, 4, 12, 42, -16, -18, 12, 24, -12, -8, 8, -18, 14, -20, -6, -12, -6, -12, -8, -12, 12, 6, -2, 36, 18, 2, 0, -12, -16, 0, -16, 12, 0, 0, -4, 18, 0, -6, -30, 48, -10, 0, -36, 0, 30, -20, 0, 18, -2, -28, 6, 12, 8, 0, 24, 6, 36, 22, -16, -18, 30, 18, 12, 12, -22, 0, -12, 18, -18, -12, 10, -72, -4, -10, -24, -36, 4, 30, 24, -24, 0, -12, -40, 18, -4, 6, 0, -12, -60, -12, -8, 24, -6, -2, -10, 72, -6, 4, -24, -30, -4, 0, 20, 6, -12, 18, 18, 36, 36, -20, 24, -6, 14, 6, 24, 48, 18, 0, 2, 36, 14, -12, 48, -84, 20, 0, 4, 72, 6, -4, -16, -18, 0, 0, 48, 42, 48, -18, -40, 6, -84, 30, 32, -72, 34, 20, 0, -36, -16, -36, 12, 42, 24, 4, -12, -36, -84, -38, 12, -12, -28, 0, -12, 12, -6, 12, -48, 0, -36, -4, -24, -24, -22, 120, 22, -48, 12, -12, -34, -108, -34, 6, 12, -60, -10, -12, 24, 24, 0, 36, -44, 18, 56, -4, 12, 12, 6, 0, -24, -24, -6, -8, -10, 0, 18, -40, -18, 78, 44, -6, 44, 6, 12, 6, 32, -18, -12, -22, -12, 42, 18, 0, 36, -6, 24, 4, -8, 36, 32, -18, -12, 0, 2, -6, -28, 54, 18, 10, 44, 0, 84, 6, 24, -24, 4, -18, -24, -24, -18, 6, 8, 0, 16, 36, -24, -48, 0, 24, 18, 24, 48, 6, 30, -54, -68, 4, -36, 42, 2, 30, -72, 42, 6, 32, 2, -18, 42, -48, -12, 0, -22, 0, -52, 12, 6, -42, -12, 0, 26, 8, -108, -24, -84, 0, 12, 0, 36, 6, -4, 0, -4, -20, -6, -48, 50, -24, 12, 0, 42, 84, 44, 0, 12, 8, -18, -42, -36, 0, -88, 12, 54, -6, -4, -18, -60, 48, -24, -36, 20, 24, 0, 60, -36, 40, -4, 36, 18, -4, 24, 6, 2, 18, 4, -120, 24, 14, -24, 0, -36, -2, 24, -48, -18, -6, -4, 60, 0, -24, -22, 36, 48, 12, 0, -12, 44, -30, -12, 48, 12, -32, -4, -36, -10, -6, 96, -84, 8, -24, 54, -18, -6, -36, -28, -36, -12, -2, -36, -12, -40, 18, 80, -6, -36, 18, 72, 36, 60, -10, -12, 0, -52, 0, 36, 72, 6, 12, 6, 0, -20, 32, -24, 54, -4, 0, -16, -42, -72, 8, -12, 0, 24, -12, -48, 36, -4, 0, -8, 6, 6, 0, 22, 18, -6, 8, 54, 120, 48, -18, 24, -48, -6, 0, -100, 18, -34, -18, -72, -6, 92, -30, -16, -12, -24, 24, -22, 0, 42, -10, -18, 12, -40, 0, 12, -36, -18, 72, -36, -18, 4, 0, -72, -12, -16, -6, 24, 18, 12, -2, 152, -72, -10, 0, -6, -12, -6, 36, -48, 36, -12, -2, 4, 108, -24, -70, 48, 24, 6, 6, 8, -24, 120, -12, 8, 18, -76, -4, 36, -84, 8, 0, 6, -120, 96, -48, 14, 54, 18, 12, -78, 60, -4, -18, -24, 6, 24, 40, -44, -72, 0, 8, 168, -6, -16, -36, -4, 12, -36, -60, 4, 36, -12, -42, -30, -24, -40, -6, 24, 12, 0, -12, 120, 36, 32, -22, 48, 24, -24, 0, 32, 48, -36, -12, 56, 180, -162, 36, 0, 84, 18, 36, 20, 6, -156, 18, 26, 0, -32, 10, -120, -54, 8, -36, 48, -60, -24, 8, 24, 0, 44, -100, -84, 72, 20, -24, 6, -12, 54, -18, 36, 72, 24, 4, 0, -72, -56, -6, -60, -30, -24, -12, 2, 72, -58, 24, -12, -84, -66, 0, 24, -24, 18, -120, 8, 0, -100, 20, -12, 30, -40, 0, -92, -12, 42, 2, 32, -18, -6, -36, -12, 18, -40, 0, 44, -48, 36, 12, 12, -72, 30, 30, 24, 42, -82, 60, 24, 0, 0, -8, 32, -54, 24, 12, -48, 168, -4, -6, 78, -60, -72, 76, 32, -18, -30, 20, 12, -42, 8, 36, 14, -12, 0, 30, 72, 54, 24, 10, 36, 12, 26, 48, 0, -66, -6, -60, 80, -144, 42, -4, 48, 24, 96, 0, 120, 48, -30, 20, 12, 54, 0, -6, -18, -6, -4, 6, -4, 84, -18, -90, -20, 36, -32, -36, -36, -66, 20, 72, 0, 6, 36, -18, 32, -18, 68, 4, -24, 24, 54, -12, -16, 18, 36, -12, 40, 108, -42, -28, 72, 192, -2, -30, -28, 24, 42, -12, -40, -18, -24, -48, -72, 24, -52, 18, 18, 60, -60, 0, 12, -108, -116, 2, -48, -36, 50, 72, -64, -12, 0, -28, 2, -54, 12, -30, 48, -12, -4, -6, 96, -60, 12, -42, 32, -36, -18, -40, -24, 30, 24, 0, -48, 0, -6, 4, -60, -108, 8, 36, 108, -12, 2, 6, -48, 12, 48, 20, -36, 0, -84, 8, 0, -48, -4, 18, 32, -108, -48, 0, -28, 54, 80, 0, -60, -48, 8, -24, 0, -78, 36, 48, -184, 18, -88, -24, -168, 6, 18, -180, 0, 84, 18, 80, -46, 0, 18, -6, -12, -120, -6, 42, 0, 6, -30, -6, -12, 0, -168, 32, 0, -24, 116, -36, 36, -48, 36, 34, -10, 144, 28, 200, 6, -84, -12, 0, 68, 36, 0, -18, 0, -18, 72, 8, 24, 18, 14, 54, 176, 0, 0, -24, 20, 90, 56, 84], "hecke_ring_index_factorization": [[3, 1]], "nf_label": "4.0.144.1", "field_poly": [1, 0, -1, 0, 1], "has_non_self_twist": 1, "char_values": [91, 3, [66, 15], [3, 2]], "Nk2": 364, "field_poly_root_of_unity": 12, "analytic_rank": 0, "char_orbit_label": "f", "weight": 2, "trace_display": [0, -2, 0, -2], "analytic_rank_proved": true, "char_parity": 1, "level_is_squarefree": true, "hecke_ring_index": 3, "level_is_prime": false, "char_is_minimal": true, "qexp_display": "q-\\zeta_{12}^{2}q^{2}+(-\\zeta_{12}-\\zeta_{12}^{2})q^{3}+(-1+\\cdots)q^{4}+\\cdots", "self_twist_discs": [], "char_is_real": false, "field_disc": 144, "level_is_prime_power": false, "relative_dim": 2, "hecke_cutters": [[2, [9, 0, 3, 0, 1]]], "space_label": "91.2.f", "level": 91, "is_self_dual": false, "inner_twists": [[1, 1, 1, 1, 1, 1, 1], [1, 1, 13, 3, 1, 3, 0]], "char_degree": 2, "char_conductor": 13, "char_orbit_index": 6, "hecke_ring_generator_nbound": 3, "hecke_orbit_code": 4503943258308699, "trace_moments": [{"__RealLiteral__": 0, "data": "0.000", "prec": 17}, {"__RealLiteral__": 0, "data": "3.836", "prec": 17}, {"__RealLiteral__": 0, "data": "0.000", "prec": 17}, {"__RealLiteral__": 0, "data": "56.634", "prec": 20}, {"__RealLiteral__": 0, "data": "0.000", "prec": 17}, {"__RealLiteral__": 0, "data": "1429.233", "prec": 27}], "id": null, "projective_field": null, "embedded_related_objects": null, "projective_image_type": null, "artin_image": null, "atkin_lehner_string": null, "atkin_lehner_eigenvals": null, "artin_field": null, "projective_image": null, "artin_field_label": null, "projective_field_label": null, "fricke_eigenval": null, "artin_degree": null, "qexp": [[0, 0, 0, 0], [1, 0, 0, 0], [0, 0, -1, 0], [0, -1, -1, 0], [-1, 1, 0, 0], [0, 0, 0, 1], [-3, 3, 1, -1], [-1, 1, 0, 0], [0, 0, 0, -1], [-1, 1, 2, -2], [0, -3, 0, 0], [0, -3, 1, 0], [1, 0, 0, 1], [0, 2, -1, 2], [0, 0, 0, 1], [0, -3, -1, 0], [0, 5, 0, 0], [6, -6, -1, 1], [6, 0, 0, 1], [-2, 2, 0, 0], [0, 0, 1, -1], [1, 0, 0, 1], [3, -3, 3, -3], [0, -3, -1, 0], [0, 3, 1, 0], [-2, 0, 0, 0], [-3, -3, -2, 2], [4, 0, 0, 0], [0, -1, 0, 0], [0, 3, 0, 0], [-3, 3, 3, -3], [-1, 0, 0, 3], [0, 0, -3, 3], [0, 0, 2, -2], [-3, 0, 0, -6], [0, 0, 1, -1], [0, -1, -2, 0], [0, 7, 0, 0], [0, 0, 0, 2], [-1, -5, -3, 1], [-3, 0, 0, 0], [0, 0, 3, 0], [0, -3, -1, 0], [-5, 5, -3, 3], [3, 0, 0, -1], [-6, 6, 1, -1], [-3, 3, 3, -3], [6, 0, 0, 4], [5, -5, -5, 5], [0, -1, 0, 0], [0, 0, 2, 0], [-9, 0, 0, -7], [-2, 0, 2, -1], [-3, 0, 0, -4], [0, 0, -4, 0], [0, 3, -3, 0], [0, 0, -1, 1], [2, 0, 0, 2], [0, 0, -3, 3], [-9, 9, -1, 1], [3, 0, 0, 1], [10, -10, 3, -3], [0, -9, 1, 0], [0, -1, -2, 0], [1, 0, 0, 0], [6, -3, 2, 0], [6, 0, 0, 0], [0, 1, 3, 0], [0, 6, 1, 0], [-6, 6, 4, -4], [3, 0, 0, 0], [-6, 6, 0, 0], [6, -6, -1, 1], [2, 0, 0, -3], [0, 0, -7, 7], [0, 2, 2, 0], [0, -2, 0, 0], [3, 0, 0, -1], [-9, 6, 6, -5], [11, 0, 0, 3], [0, 0, 5, 0], [0, -1, 2, 0], [9, -9, 0, 0], [3, 0, 0, -3], [-1, 1, 1, -1], [3, -3, -6, 6], [-9, 0, 0, 5], [3, -3, -3, 3], [0, -3, 3, 0], [0, -6, -4, 0], [3, 0, 0, 6], [-2, 0, 2, -1], [3, 0, 0, 1], [0, -8, -2, 0], [0, -12, -6, 0], [0, 0, 2, -2], [-9, 0, 0, -3], [4, -4, 6, -6], [0, 0, 1, -1], [-3, 0, 0, 5], [2, -2, 0, 0]]}