# Stored data for newform 882.2.h.n, downloaded from the LMFDB on 05 September 2025. {"Nk2": 3528, "analytic_conductor": 7.04280545827693, "analytic_rank": 0, "analytic_rank_proved": true, "char_conductor": 63, "char_degree": 2, "char_is_minimal": false, "char_is_real": false, "char_orbit_index": 8, "char_orbit_label": "h", "char_order": 3, "char_parity": 1, "char_values": [882, 3, [785, 199], [1, 2]], "cm_discs": [], "conrey_index": 67, "dim": 4, "field_disc": 1089, "field_disc_factorization": [[3, 2], [11, 2]], "field_poly": [9, -3, -2, -1, 1], "field_poly_is_cyclotomic": false, "field_poly_is_real_cyclotomic": false, "field_poly_root_of_unity": 0, "has_non_self_twist": 1, "hecke_cutters": [[5, [-6, 3, 1]], [11, [-6, -3, 1]], [13, [4, -2, 1]]], "hecke_orbit": 14, "hecke_orbit_code": 58547276225708914, "hecke_ring_generator_nbound": 3, "hecke_ring_index": 1, "hecke_ring_index_factorization": [], "hecke_ring_index_proved": true, "inner_twist_count": 2, "inner_twists": [[1, 1, 1, 1, 1, 1, 1], [1, 1, 63, 7, 1, 3, 0]], "is_cm": false, "is_largest": false, "is_maximal": false, "is_polredabs": true, "is_rm": false, "is_self_dual": false, "is_self_twist": false, "is_twist_minimal": false, "label": "882.2.h.n", "level": 882, "level_is_powerful": false, "level_is_prime": false, "level_is_prime_power": false, "level_is_prime_square": false, "level_is_square": false, "level_is_squarefree": false, "level_primes": [2, 3, 7], "level_radical": 42, "minimal_twist": "126.2.f.d", "nf_label": "4.0.1089.1", "prim_orbit_index": 7, "qexp_display": "q+(1-\\beta _{2})q^{2}+(\\beta _{2}+\\beta _{3})q^{3}-\\beta _{2}q^{4}+\\cdots", "related_objects": [], "relative_dim": 2, "rm_discs": [], "sato_tate_group": "1.2.3.c3", "self_twist_discs": [], "self_twist_type": 0, "space_label": "882.2.h", "trace_display": [2, 1, -6, 0], "trace_hash": 1623248190942420700, "trace_moments": [{"__RealLiteral__": 0, "data": "0.000", "prec": 17}, {"__RealLiteral__": 0, "data": "3.990", "prec": 17}, {"__RealLiteral__": 0, "data": "0.000", "prec": 17}, {"__RealLiteral__": 0, "data": "60.794", "prec": 20}, {"__RealLiteral__": 0, "data": "0.000", "prec": 17}, {"__RealLiteral__": 0, "data": "1556.357", "prec": 27}], "trace_zratio": {"__RealLiteral__": 0, "data": "0.009", "prec": 17}, "traces": [0, 4, 2, 1, -2, -6, 2, 0, -4, 5, -3, 6, 1, 4, 0, 15, -2, -3, -5, 10, 3, 0, 3, -18, -1, 22, -4, 16, 0, 6, -3, 4, 2, 18, 3, 0, -10, -4, 20, 4, 6, 15, 0, -1, -3, 9, -9, 0, -2, 0, 11, -3, -8, 6, 8, 24, 0, -5, 12, -3, -18, -11, 8, 0, 4, -6, 3, -13, 6, -21, 0, 6, -5, 7, -8, -44, 10, 0, 2, -7, 3, -7, -15, 12, 0, -12, -2, -36, -6, 18, 24, 0, 9, -2, 0, -15, -1, 1, 0, 24, -11, -18, 15, 40, -4, 0, -6, 9, -8, -28, 12, 2, 0, 3, 5, -6, 6, -10, -6, 0, -15, -2, 11, 15, 4, -102, 0, -22, 2, -49, 6, 18, -15, 0, -26, -24, 3, 54, -9, -8, 0, 0, 3, 6, 5, -42, -7, 0, -4, 36, 11, 2, -10, -9, 0, -6, -2, 1, 7, 6, -3, 0, -14, 2, -30, 6, 24, 12, 0, 18, 12, 50, -1, -12, -30, 0, -3, 51, 36, -18, 15, -38, 0, -11, 18, 6, 2, -21, 0, 0, -30, 21, 1, 14, 2, -6, 0, -24, 9, -20, -22, -43, -9, 0, 18, -6, 20, -39, 4, 15, 0, 32, -12, 51, 18, -48, -16, 0, 28, 7, -12, 6, -2, -8, 0, -22, -3, 72, 10, 46, -3, 0, -6, 12, -20, 0, -3, -7, 0, 9, 3, -38, -1, 31, 22, 0, -9, 40, -4, -72, -51, 36, 0, -60, -11, -12, -2, -30, -50, 0, 12, 30, 9, 42, -18, -42, 0, -42, -13, -9, -45, -2, -3, 0, 27, -66, 12, 20, 8, 20, 0, -27, 0, 37, -3, 90, -6, 0, 10, 13, -84, 49, -14, -15, 0, 54, 4, 24, 18, -18, 55, 0, 1, -21, -20, -33, 15, 52, 0, 10, -12, -18, -4, -23, 2, 0, 14, 12, 36, -24, -6, -21, 0, -30, -7, 22, 4, -28, -15, 0, 12, -10, 12, -20, -12, -30, 0, -1, 36, 3, 24, 6, 25, 0, 1, -51, 12, 3, 6, -44, 0, 16, 3, 42, 48, 90, 18, 0, 18, -15, -9, -12, -19, 49, 0, -60, 44, -20, 9, -21, 12, 0, 4, -40, 21, 57, 0, 24, 0, 2, -15, -55, -21, 108, 2, 0, 28, -5, 1, -48, -36, 30, 0, 21, -12, -39, -15, -44, 20, 0, -11, -24, -56, 16, 9, 93, 0, -6, 3, 7, 6, 30, -20, 0, 6, -84, 8, -8, 30, 15, 0, -34, -32, 0, -6, 33, 3, 0, 9, 6, -96, 36, -8, 46, 0, 120, 56, -45, 53, 16, -24, 0, 12, 63, -4, -60, -16, 42, 0, 132, -77, 39, -6, -49, 36, 0, 5, 2, 23, 21, 3, 33, 0, 29, -12, 36, 24, 3, -10, 0, 0, -50, 3, -51, 46, 55, 0, -48, -9, -108, 18, -16, -19, 0, 1, 48, -31, -19, 11, -100, 0, 45, -24, 48, 20, 30, -8, 0, -60, 38, 51, 12, 18, 60, 0, -6, -30, -9, 11, 24, -6, 0, -4, 40, -15, -60, -1, 0, 0, -12, 6, -21, -18, -53, -9, 0, 21, -12, -3, 22, 42, -15, 0, -30, -24, -30, 13, -18, 9, 0, -21, -22, -4, -59, -6, 42, 0, -19, -27, -22, -33, -30, 21, 0, 10, -36, 16, -36, 10, -4, 0, -21, -54, 6, 0, -21, 74, 0, -6, -15, 75, -7, -12, 21, 0, 0, 5, 37, 26, -7, -42, 0, 50, -24, -7, 48, 15, 6, 0, -20, 108, -6, 8, 18, -21, 0, -18, -20, 18, -48, 44, 31, 0, -65, -1, 102, -9, -20, -10, 0, 33, 0, 24, 38, 26, -6, 0, -9, 20, -44, -6, -72, -36, 0, -2, 208, 23, 75, 1, 12, 0, -46, 7, 32, -12, -66, 30, 0, -48, 57, -3, -24, -12, 1, 0, 90, -15, -12, 7, 45, -22, 0, 2, -84, -14, 6, 15, -67, 0, 30, 6, 37, 10, 30, -12, 0, -10, 6, -24, 4, -60, -66, 0, 23, 1, 88, 18, 0, 18, 0, 12, 51, 12, 15, -25, -48, 0, 61, 2, -12, -3, -29, 24, 0, 6, -87, 36, 39, -88, 27, 0, -84, -16, 20, 6, 0, 21, 0, -3, -88, 45, -32, -18, -18, 0, 24, 36, 9, -30, -6, -24, 0, 12, 40, 19, 132, -1, -38, 0, 20, 60, 102, 55, 130, -10, 0, -9, -69, -75, -1, 6, 10, 0, -30, 2, 12, -20, 60, 42, 0, -51, -34, 0, 9, 12, -102, 0, 116, 1, -114, 15, -96, -11, 0, -42, 30, 54, -12, 1, -20, 0, -90, 14, -51, -52, 22, -1, 0, -24, 150, -30, 108, -30, -42, 0, -51, 9, -8, 12, 27, 39, 0, -24, 22, -88, -42, 40, -45, 0, 0, 11, 90, -12, -39, -13, 0, 8, -9, 18, -15, 21, -134, 0, -98, -12, -102, -15, 5, 14, 0, 12, 42, 27, -10, -40, 0, 0, 48, 45, -62, -168, 104, 4, 0, 95, 48, 15, 16, -15, -12, 0, -26, -68, 30, -64, -27, 0, 0, 6, -68, -33, 18, -48, -53, 0, -75, -9, -24, -30, -170, -48, 0, -36, 9, 8, 18, 23, -56, 0, -60, 78, -52, 28, 5, -90, 0, 46, -28, -16, -15, -12, 12, 0, -58, 6, -126, -63, 12, -2, 0, -120, 72, -8, 0, 18, -6, 0, -18, 66, -12, -55, -24, -39, 0, -3, -42, 1, -70, -36, -39, 0, 81, -5, -48, -2, -33, -23, 0, 45, 77, 6, 13, 66, 6, 0, -22, -29, 50, -6, 54, 30, 0, 12, -90, 6, -18, 10, 16, 0, -23, 0, 21, -49, -84, 6, 0, -102, -51, 53, -14, 110, 12, 0, 78, -30, -81, -18, 12, -54, 0, 15, 54, -8, 45, 19, -21, 0, -79, 2, -90, 96, 9, -62, 0, 19, 22, -11, -63, -98, -6, 0, 70, -45, 180, -15, 36, 24, 0, -20, 54, -30, -28, -4, -10, 0, 30, 12, -14, 19, -16, 102], "weight": 2, "weight_parity": 1, "id": null, "artin_degree": null, "artin_field": null, "artin_field_label": null, "artin_image": null, "atkin_lehner_eigenvals": null, "atkin_lehner_string": null, "embedded_related_objects": null, "fricke_eigenval": null, "projective_field": null, "projective_field_label": null, "projective_image": null, "projective_image_type": null, "qexp": [[0, 0, 0, 0], [1, 0, 0, 0], [1, 0, -1, 0], [0, 0, 1, 1], [0, 0, -1, 0], [-2, 1, 1, 1], [1, -1, 0, 1], [0, 0, 0, 0], [-1, 0, 0, 0], [2, 1, -2, 0], [-1, -1, 2, 2], [1, 1, 1, 1], [1, -1, -1, 0], [2, 0, -2, 0], [0, 0, 0, 0], [5, 1, -4, -2], [-1, 0, 1, 0], [-2, 1, 1, -2], [0, 0, -2, 1], [0, 0, 5, 0], [1, -2, 1, 1], [0, 0, 0, 0], [2, -1, -1, 2], [-4, -1, -1, -1], [0, 0, -1, -1], [7, -3, -3, -3], [0, 0, -2, 0], [5, -2, 0, 2], [0, 0, 0, 0], [2, -4, 2, 2], [1, 2, -5, -1], [0, 0, 2, 0], [0, 0, 1, 0], [5, 1, -1, 1], [-1, 2, 2, -1], [0, 0, 0, 0], [-2, -1, 0, 1], [0, 0, -2, 0], [5, 0, 0, 0], [2, -2, 0, 2], [2, -1, -1, -1], [8, -1, -7, 2], [0, 0, 0, 0], [3, -6, -2, 3], [1, -2, -2, 1], [1, -4, 7, 5], [-5, 1, 4, -2], [0, 0, 0, 0], [-1, 1, 0, -1], [0, 0, 0, 0], [4, 3, -7, -6], [-4, 1, 5, -2], [-2, 0, 0, 0], [2, 2, -4, -4], [5, -2, -5, 0], [6, 0, 0, 0], [0, 0, 0, 0], [-5, 5, 5, 0], [4, -2, -2, -2], [-3, 6, 0, -3], [-4, 1, -1, 1], [-7, 3, 4, -6], [2, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 0], [-2, -2, 4, 4], [4, -1, -5, 2], [3, -6, -8, 3], [1, 1, 1, 1], [-5, -1, -2, -4], [0, 0, 0, 0], [0, 3, 3, 3], [-2, -1, 2, 0], [2, 3, -5, -6], [-2, 0, 0, 0], [-15, -3, 13, 7], [5, 0, -5, 0], [0, 0, 0, 0], [2, -2, -2, 0], [-5, 3, 2, -6], [1, 1, -2, -2], [0, 0, -1, 5], [1, -2, -8, 1], [4, -8, 4, 4], [0, 0, 0, 0], [-6, 0, 6, 0], [1, -3, -3, -3], [-8, 2, -2, 2], [-1, -1, -1, -1], [2, -4, 8, 2], [8, -5, -1, 1], [0, 0, 0, 0], [-1, 2, 5, -1], [-2, 2, 2, 0], [0, 0, 0, 0], [-5, 10, -5, -5], [-1, 1, 1, 0], [-3, 6, 2, -3], [0, 0, 0, 0], [7, -1, 1, 5], [-3, 6, -4, -3]]}