# Stored data for newform 82.2.d.b, downloaded from the LMFDB on 13 September 2025. {"Nk2": 328, "analytic_conductor": 0.6547732965744991, "analytic_rank": 0, "analytic_rank_proved": true, "char_conductor": 41, "char_degree": 4, "char_is_minimal": true, "char_is_real": false, "char_orbit_index": 4, "char_orbit_label": "d", "char_order": 5, "char_parity": 1, "char_values": [82, 5, [47], [4]], "cm_discs": [], "conrey_index": 37, "dim": 4, "field_disc": 125, "field_disc_factorization": [[5, 3]], "field_poly": [1, -1, 1, -1, 1], "field_poly_is_cyclotomic": true, "field_poly_is_real_cyclotomic": false, "field_poly_root_of_unity": 10, "has_non_self_twist": 1, "hecke_cutters": [[3, [-1, -1, 1]]], "hecke_orbit": 2, "hecke_orbit_code": 4503805819355218, "hecke_ring_generator_nbound": 2, "hecke_ring_index": 1, "hecke_ring_index_factorization": [], "hecke_ring_index_proved": true, "inner_twist_count": 2, "inner_twists": [[1, 1, 1, 1, 1, 1, 1], [1, 1, 41, 4, 1, 5, 0]], "is_cm": false, "is_largest": false, "is_maximal": false, "is_polredabs": true, "is_rm": false, "is_self_dual": false, "is_self_twist": false, "is_twist_minimal": true, "label": "82.2.d.b", "level": 82, "level_is_powerful": false, "level_is_prime": false, "level_is_prime_power": false, "level_is_prime_square": false, "level_is_square": false, "level_is_squarefree": true, "level_primes": [2, 41], "level_radical": 82, "minimal_twist": "82.2.d.b", "nf_label": "4.0.125.1", "prim_orbit_index": 4, "qexp_display": "q+(1-\\zeta_{10}+\\zeta_{10}^{2}-\\zeta_{10}^{3})q^{2}+(-\\zeta_{10}^{2}+\\cdots)q^{3}+\\cdots", "related_objects": [], "relative_dim": 1, "rm_discs": [], "sato_tate_group": "1.2.3.c5", "self_twist_discs": [], "self_twist_type": 0, "space_label": "82.2.d", "trace_display": [1, 2, 2, 4], "trace_hash": 2171322392176156732, "trace_moments": [{"__RealLiteral__": 0, "data": "0.000", "prec": 17}, {"__RealLiteral__": 0, "data": "3.922", "prec": 17}, {"__RealLiteral__": 0, "data": "0.498", "prec": 17}, {"__RealLiteral__": 0, "data": "45.940", "prec": 20}, {"__RealLiteral__": 0, "data": "34.173", "prec": 20}, {"__RealLiteral__": 0, "data": "988.186", "prec": 24}], "trace_zratio": {"__RealLiteral__": 0, "data": "0.003", "prec": 17}, "traces": [0, 4, 1, 2, -1, 2, -2, 4, 1, -6, -2, -3, -3, -9, 6, 1, -1, -3, -4, -1, -3, -3, 3, 3, 3, 1, -1, -4, 4, 15, -1, -12, -4, -9, -7, 7, -1, 13, 16, 8, -2, 11, -2, -18, 12, -3, 2, -4, 2, 11, 14, 1, 1, -1, 9, 6, 1, -8, -15, 12, 1, 9, -13, -11, -1, 8, -6, -28, -8, -1, 3, 7, 1, -20, -13, -7, -1, -3, 7, 56, -3, -4, -16, -42, -3, -14, -12, 25, 3, 9, 3, -34, -2, -11, -16, 7, -2, 9, 4, -3, 1, -23, 4, 15, 9, -4, 1, 14, 11, 12, 9, 19, -1, -7, 18, -1, -5, 26, 13, 7, 4, 2, -4, 8, -2, 23, -14, 33, 1, 6, 17, 20, 6, -1, 28, -2, -7, -36, 1, -3, -3, -12, 8, -27, 4, 5, -30, 18, -7, -32, 12, 18, -9, 7, 3, -26, -7, -14, 14, -18, -2, 8, 14, -42, -9, -12, -23, -38, -2, 32, -11, -6, 12, -24, -25, 1, -3, 1, 16, -48, 7, 41, -26, 2, -3, -1, 1, 21, 16, 16, 8, 20, 2, -6, -9, -1, -14, -33, -12, -1, -6, -24, 18, 0, 6, -17, 40, -7, 16, 27, -1, -9, -16, 6, -4, 6, -11, 13, 13, 40, 6, 43, -19, 34, -4, -9, 22, 38, -8, -7, -4, 6, 20, -5, 9, -12, -13, 28, -7, -46, 1, 37, -2, -20, 9, 8, -18, -44, -13, 4, 17, 15, -11, 9, -33, 8, -1, 12, -6, 8, 18, -5, -5, 18, -6, -33, 6, -8, 32, -5, 2, 51, -3, 18, -4, 18, -1, 12, 8, 13, -7, -21, -28, -44, 2, 1, -48, 31, 6, -12, -10, 7, -20, 22, 7, 1, 12, 33, 32, -8, -7, -48, -8, -9, 9, 7, 18, 28, 12, -20, -14, -28, -8, -24, 24, -18, -14, -19, 18, -60, 2, 2, 7, 7, 16, -46, 22, -14, -1, 16, -3, -18, -2, -7, -42, 36, 2, -116, -32, -36, -4, 39, -14, 3, 18, 2, -1, 55, -10, -5, 9, -41, 3, -9, 14, 16, 9, -4, 48, 4, 8, -42, 24, -4, -9, -10, -22, -23, -2, -14, -14, 49, 24, 11, 9, -6, 4, 25, 14, -32, -8, 44, 5, 32, 3, 21, 6, 42, -11, -43, -9, -11, 4, 45, -17, 28, -18, 32, 21, -8, 6, 28, 24, 67, -23, -2, 5, -36, 4, 66, -28, -28, 15, 22, -3, -21, 9, -4, -27, 22, 1, 20, -1, -4, -34, 8, -1, 9, 14, 24, 24, 9, -9, 36, -13, 5, 7, -2, 10, -13, -6, -4, 52, 45, -6, 17, -4, -36, -6, -29, -16, 3, 58, -26, 12, -17, -17, 19, 12, -7, -6, 63, -6, -19, -5, 2, 35, -28, -9, -68, -8, -12, -12, -54, -28, -44, -18, -16, -34, -46, -1, 27, -37, -6, 2, -13, -25, 27, 11, -86, -3, 88, 8, 0, -11, -24, -12, -8, 21, -71, -17, 46, -15, -61, -4, -14, 6, 16, -22, 33, 7, -70, 1, 31, -2, 35, 6, -12, 7, -22, 17, -40, 5, 34, -50, -7, 7, -41, -9, 24, -32, -23, 14, 44, -2, 12, 8, -44, -35, -12, -7, -5, 24, 58, 3, 6, 17, 36, 14, -16, -18, 35, 1, 56, -17, 7, -3, -59, 27, 48, -8, -12, -19, -2, 28, 44, 44, 26, 8, -39, 9, 56, -27, 10, 14, 2, 4, 36, -28, 7, 5, -67, -7, 102, 20, -17, 33, -30, -22, 58, -11, -49, -7, 36, 27, -29, 28, 22, 8, -30, -13, -64, -42, 32, 8, -4, 64, 69, 1, 5, -2, 24, 22, 13, 72, 9, 18, 38, 10, 7, -1, 7, -17, 9, -2, -36, 24, 51, -14, -16, -7, -8, 14, 8, -26, -11, 17, -6, 15, -8, 3, -35, -32, -32, 3, -12, -7, -78, -16, 36, -19, -1, 43, 4, -6, -10, -19, 80, 4, 20, 3, -74, -17, -26, 2, 12, 7, 10, -23, -38, 64, -33, 3, -40, -24, 29, -48, -57, -29, 24, 4, -6, 36, -102, -6, -18, -3, -26, 12, 31, 3, 34, 11, 12, 30, 1, 30, -57, -30, 40, 16, -47, -29, 33, -3, -16, -26, -23, -14, -26, 9, -84, 1, -14, 4, -51, 52, 17, -14, -69, 7, 15, -38, 81, -34, 25, -6, -12, 9, 42, 10, 66, 2, 37, -27, 14, -3, -24, 14, 28, -1, -22, 16, -28, 1, 24, -11, 88, -9, 14, 11, -42, -24, 0, 5, -26, 16, 4, -33, -3, -7, 5, -44, 32, -5, 36, -17, -37, -3, 29, 24, 26, 19, -29, 18, 47, -4, -1, -132, 71, -16, -24, -14, -85, 11, -2, 25, -27, 32, 29, -28, -22, -12, -24, -12, 16, -21, 20, -7, -12, -1, -26, 47, -60, -4, 4, 58, -30, -32, -49, 2, -40, -5, -12, 21, -21, 1, 12, -21, 86, -12, 82, 18, 46, -5, 39, 23, 9, 3, 68, 21, 41, 1, -2, 14, -19, -3, 32, -47, 23, 4, 84, -30, 2, 1, -64, 4, 12, -16, -47, -8, 6, -14, 19, 16, -13, 16, 47, 6, 10, 36, -12, 56, 14, 4, -12, 64, -16, -27, -42, -20, -92, -7, -11, 7, 58, -10, -57, 13, 11, -9, 90, -1, 27, 43, 13, -15, 78, 26, 33, 8, 48, 4, 136, 36, 56, -4, 1, -51, -90, -9, -98, 57, 36, 22, 48, -34, -58, 38, 37, 17, 0, 17, -6, 11, -9, 38, 5, -23, -20, -4, -36, 67, -42, -9, 27, 19, -50, -15, -4, 13, -69, -35, -39, -112, -12, -26, -39, -32, -42, 8, -44, 52, 2, 2, 23, -36, 29, -42, 170, -11, -12, -22, -7, 16, 10, -46, -90, -24, -26, 1, -13, 23, -26, 7, 32, -4, 46, -2, 1, -22, 33, -15, -3, -27, -8, -11, -85, 21, -3, -7, -38, 32, -10, 27, -34, 5, 8, 11, -6, -21, 8, 12, 16, 8, 22, 19, -53, -14, -63, -23], "weight": 2, "weight_parity": 1, "id": null, "artin_degree": null, "artin_field": null, "artin_field_label": null, "artin_image": null, "atkin_lehner_eigenvals": null, "atkin_lehner_string": null, "embedded_related_objects": null, "fricke_eigenval": null, "projective_field": null, "projective_field_label": null, "projective_image": null, "projective_image_type": null, "qexp": [[0, 0, 0, 0], [1, 0, 0, 0], [1, -1, 1, -1], [0, 0, -1, 1], [0, 0, 0, -1], [1, -1, 0, -1], [0, -1, 1, 0], [1, 1, 1, 0], [0, 0, -1, 0], [-2, 0, -1, 1], [0, -1, 0, -1], [0, 0, 3, 0], [-1, 1, 0, 0], [-5, 3, -3, 5], [2, 0, 1, -1], [0, 0, 0, 1], [0, -1, 0, 0], [0, -2, -1, -2], [-2, 1, -1, 2], [-2, 5, -2, 0], [-1, 0, -1, 0], [-1, 0, -1, 0], [0, 3, 0, 0], [1, 0, 0, -1], [0, 1, -1, 1], [-1, 4, -1, 0], [-2, 2, 0, 5], [1, 0, 4, -4], [2, -1, 1, -2], [4, -4, 0, 3], [0, 0, 1, 0], [0, -5, 2, -5], [-1, 0, 0, 0], [0, -3, 3, -3], [-2, -1, -2, 0], [3, -1, 1, -3], [-1, 1, 0, 2], [4, -4, 0, 1], [3, 0, -2, 2], [2, 1, -1, -2], [-1, 0, -1, 1], [6, -7, 2, -4], [-1, 0, -1, 1], [-6, 0, 0, 6], [3, 0, 0, 0], [-2, 2, 0, 3], [1, -1, 0, -1], [4, -8, 8, -4], [1, -1, 1, 0], [0, 3, -5, 3], [3, 0, -1, 1], [0, 1, 1, 1], [0, 2, 3, 2], [3, -3, 0, -10], [1, 3, -3, -1], [3, 0, 3, -3], [1, -1, 0, -2], [-5, 7, -5, 0], [0, -4, 7, -4], [2, 3, -3, -2], [0, 1, 0, 0], [4, -3, 4, 0], [-5, 2, -5, 0], [-3, -2, -3, 0], [-1, 1, -1, 1], [0, 5, 2, 5], [-3, 3, -3, 0], [-12, 12, 0, 8], [-3, 0, -2, 2], [-1, 1, -1, 1], [2, -2, 0, -3], [0, 3, -1, 3], [0, 1, 1, 1], [-10, 0, -10, 10], [0, -4, 5, -4], [-4, 5, -4, 0], [3, -5, 5, -3], [-3, 3, 0, 6], [3, -3, 0, -2], [14, 0, 0, 0], [-1, 0, 0, 1], [2, 0, 6, -6], [-1, -4, 2, -6], [-13, 0, -5, 5], [-1, 0, 0, 1], [-5, 0, -3, 3], [-6, 6, 0, 6], [7, -7, 0, 4], [3, -3, 3, -3], [2, 3, 2, 0], [0, 2, 1, 2], [-12, 0, -7, 7], [0, -1, 0, -1], [0, -2, 7, -2], [-4, 4, 0, -4], [1, 2, -2, -1], [0, 0, 1, -1], [4, -4, 0, -3], [3, -5, 3, 0], [0, -3, -3, -3], [3, -4, 4, -3]]}