# Stored data for newform 624.4.q.c, downloaded from the LMFDB on 29 January 2023. {"level_primes": [2, 3, 13], "is_polredabs": true, "sato_tate_group": "3.2.3.c3", "rm_discs": [], "conrey_indexes": [289, 529], "cm_discs": [], "trace_hash": 906474231517200915, "level_radical": 78, "hecke_ring_index_proved": true, "self_twist_type": 0, "related_objects": [], "prim_orbit_index": 3, "is_cm": false, "hecke_orbit": 3, "analytic_conductor": 36.817191843582144, "inner_twist_count": 2, "field_disc_factorization": [[-1, 1], [3, 1]], "is_rm": false, "char_order": 3, "level_is_square": false, "weight_parity": 1, "label": "624.4.q.c", "field_poly_is_real_cyclotomic": false, "is_self_twist": false, "is_twist_minimal": false, "minimal_twist": "39.4.e.b", "field_poly_is_cyclotomic": true, "dim": 2, "trace_zratio": 0, "traces": [0, 2, 0, 3, 0, 14, 0, -10, 0, -9, 0, -22, 0, -91, 0, 21, 0, -37, 0, 30, 0, -60, 0, -162, 0, -152, 0, -54, 0, 113, 0, -392, 0, 66, 0, -70, 0, -13, 0, -195, 0, -285, 0, -246, 0, -63, 0, 924, 0, 243, 0, -222, 0, -1074, 0, -154, 0, 180, 0, 576, 0, 635, 0, -90, 0, -637, 0, 202, 0, 486, 0, -1086, 0, -1610, 0, -228, 0, 440, 0, -1768, 0, -81, 0, -1036, 0, -259, 0, -339, 0, -194, 0, 260, 0, -588, 0, 210, 0, 1202, 0, 396, 0, 429, 0, 2604, 0, -420, 0, -1338, 0, -2068, 0, 39, 0, -1077, 0, -1134, 0, 234, 0, -370, 0, 847, 0, 855, 0, -2814, 0, -988, 0, -1476, 0, -1120, 0, 300, 0, -378, 0, 519, 0, -348, 0, 1386, 0, 1430, 0, 791, 0, -729, 0, 645, 0, -5828, 0, -333, 0, -2744, 0, -4158, 0, -1611, 0, 3240, 0, 1700, 0, 462, 0, 3680, 0, 3887, 0, 270, 0, -4146, 0, 760, 0, 3456, 0, 3674, 0, -6566, 0, 3810, 0, -91, 0, 1628, 0, 270, 0, -596, 0, 393, 0, -1365, 0, 3522, 0, 2018, 0, -606, 0, -2260, 0, -1995, 0, 2916, 0, -1320, 0, 160, 0, -6516, 0, -1722, 0, 1960, 0, -2415, 0, 962, 0, 4072, 0, 684, 0, -5794, 0, 12964, 0, 660, 0, 13780, 0, 6468, 0, -2652, 0, -4932, 0, 3617, 0, 243, 0, 1701, 0, -780, 0, -1554, 0, 4860, 0, -3564, 0, -1554, 0, -565, 0, 260, 0, -2034, 0, -498, 0, -7518, 0, 582, 0, -5546, 0, -2256, 0, 2730, 0, 1672, 0, -2309, 0, 1764, 0, 11666, 0, 1650, 0, 1260, 0, 5700, 0, 3544, 0, 7212, 0, -2991, 0, 4032, 0, 594, 0, 10530, 0, -2460, 0, -1287, 0, 4445, 0, 4844, 0, 3906, 0, 6804, 0, 4620, 0, -630, 0, -514, 0, 2486, 0, 4014, 0, 1110, 0, 6916, 0, -3102, 0, -4620, 0, 1028, 0, 234, 0, 1414, 0, 4974, 0, -6462, 0, 4312, 0, -11720, 0, 3402, 0, -2850, 0, 2018, 0, 2457, 0, 5287, 0, -7602, 0, 1110, 0, 14556, 0, 5959, 0, 5082, 0, -11270, 0, -4202, 0, 5130, 0, 5370, 0, 1583, 0, -4221, 0, -7345, 0, -2052, 0, 2964, 0, -6872, 0, 3080, 0, -2214, 0, -23306, 0, 11988, 0, -1680, 0, -12376, 0, -6134, 0, -900, 0, 10795, 0, 17836, 0, -567, 0, -286, 0, 8489, 0, 3114, 0, 5760, 0, -7252, 0, -2088, 0, 1496, 0, -23390, 0, -4158, 0, 2812, 0, 6350, 0, -1716, 0, 10590, 0, 13949, 0, -2373, 0, -9720, 0, -10726, 0, -4374, 0, -32456, 0, -1358, 0, 3870, 0, -7538, 0, -6270, 0, -8742, 0, 1820, 0, -15539, 0, 999, 0, -4811, 0, -1124, 0, -4116, 0, -9828, 0, -4040, 0, -6237, 0, 10824, 0, -2280, 0, 4833, 0, -3600, 0, 845, 0, 4860, 0, 8414, 0, -17130, 0, 10200, 0, -11838, 0, -8362, 0, 2772, 0, -10860, 0, -17952, 0, -11040, 0, 1682, 0, 3003, 0, 11154, 0, -15167, 0, 8050, 0, -810, 0, 18228, 0, -10164, 0, -24876, 0, -13566, 0, -13918, 0, 4560, 0, 7252, 0, -14077, 0, 5184, 0, 18525, 0, -9366, 0, -11022, 0, 5346, 0, -2670, 0, -9849, 0, -14476, 0, 7612, 0, 5715, 0, 6780, 0, 8840, 0, 273, 0, 1905, 0, 6396, 0, 2442, 0, -4800, 0, -7539, 0, 1620, 0, -14678, 0, 1172, 0, -3576, 0, 12312, 0, 17878, 0, -1179, 0, 5180, 0, 11814, 0, 1638, 0, -13792, 0, -5880, 0, -10566, 0, 19138, 0, -2590, 0, 12108, 0, 10384, 0, 3677, 0, -3636, 0, 5929, 0, -10960, 0, -3390, 0, -42042, 0, 26027, 0, 5985, 0, -17681, 0, -6384, 0, 4374, 0, 3880, 0, -698, 0, -1980, 0, 962, 0, 7580, 0, -480, 0, -6916, 0, -15795, 0, -9774, 0, 27707, 0, 11216, 0, -10332, 0, -2536, 0, -25344, 0, 11760, 0, -17730, 0, -7840, 0, 7245, 0, 18920, 0, -5241, 0, 10101, 0, 2100, 0, 18306, 0, -12216, 0, -27940, 0, -20467, 0, 4104, 0, -140, 0, 12020, 0, -34764, 0, 6432, 0, 3633, 0, 19446, 0, 48867, 0, -6666, 0, -1980, 0, -2436, 0, 21090, 0, 20670, 0, -28108, 0, -780, 0, 9702, 0, -8580, 0, 71, 0, 7956, 0, 31752, 0, 10010, 0, -7398, 0, 3936, 0, -13020, 0, 21702, 0, -8588, 0, -68404, 0, 1458, 0, -9102, 0, -54726, 0, -5103, 0, 4444, 0, 21776, 0, -8190, 0, 2484, 0, 4515, 0, 4662, 0, 26760, 0, 32906, 0, 29160, 0, -40796, 0, 3914, 0, -21384, 0, 33038, 0, 10340, 0, -2331, 0, -14976, 0, 17586, 0, 1695, 0, -18314, 0, 29792, 0, 390, 0, -17100, 0, 47784, 0, -3051, 0, -29106, 0, -42068, 0, 1494, 0, -10770, 0, -16510, 0, -11277, 0, 4282, 0, -17094, 0, 3492, 0, 17710, 0, 22680, 0, -33276, 0, -40221, 0, 14168, 0, 6768, 0, 11900, 0, 7380, 0, 5850, 0, -17338, 0, 35496, 0, -5016, 0, 29984, 0, 20659, 0, -13854, 0, -17982, 0, 25760, 0, 10584, 0, 28716, 0, 11620, 0, 17499, 0, 27209, 0, 8470, 0, -4950, 0, -2106, 0, 26754, 0, 1890, 0, -54838, 0, -4844, 0, 8550, 0, 69044, 0, -29022, 0, -10632, 0, 19448, 0, -13130, 0, 10818, 0, 14070, 0, -13733, 0, -17946, 0, 22759, 0, 4336, 0, 24192, 0, 15888, 0, 19760, 0, -1782, 0, 13860, 0, 25718, 0, -12636, 0, -22148, 0, 19869, 0, 7380, 0, -45962, 0, -11628, 0, -7722, 0, 25168, 0, 11396, 0, 26670, 0, 5600, 0, 17184, 0, 7266, 0, 28236, 0, 988, 0, -11718, 0, -12777, 0, 14580, 0, 10206, 0, 11396, 0, 18382, 0, 6930, 0, 100996, 0, -46170, 0, 1890, 0, 1560, 0, 73255, 0, -771, 0, 21498, 0, -4172, 0, 14916, 0, 5190, 0, 17250, 0, 24084, 0, 2751, 0, 836, 0, -3330, 0, 18132, 0, -3480, 0, 14820, 0, -12501, 0, -4268, 0, 9306, 0, 87416, 0, 24654, 0, -27720, 0, 79704, 0, -39614, 0, 6168, 0, 14126, 0, 36503, 0, 351, 0], "hecke_ring_index_factorization": [], "nf_label": "2.0.3.1", "field_poly": [1, -1, 1], "has_non_self_twist": 1, "char_values": [624, 3, [79, 469, 209, 145], [3, 3, 3, 1]], "Nk2": 9984, "field_poly_root_of_unity": 6, "analytic_rank": 0, "char_orbit_label": "q", "weight": 4, "trace_display": [0, 3, 14, -10], "analytic_rank_proved": true, "char_parity": 1, "level_is_squarefree": false, "hecke_ring_index": 1, "level_is_prime": false, "char_is_minimal": false, "qexp_display": "q+(3-3\\zeta_{6})q^{3}+7q^{5}-10\\zeta_{6}q^{7}-9\\zeta_{6}q^{9}+\\cdots", "self_twist_discs": [], "char_is_real": false, "field_disc": -3, "level_is_prime_power": false, "relative_dim": 1, "hecke_cutters": [[5, [-7, 1]], [7, [100, 10, 1]]], "space_label": "624.4.q", "level": 624, "is_self_dual": false, "inner_twists": [[1, 1, 1, 1, 1, 1, 1], [1, 1, 13, 3, 1, 3, 0]], "char_degree": 2, "char_conductor": 13, "char_orbit_index": 17, "hecke_ring_generator_nbound": 7, "hecke_orbit_code": 9008298833478256, "trace_moments": [{"__RealLiteral__": 0, "data": "0.000", "prec": 17}, {"__RealLiteral__": 0, "data": "1.878", "prec": 17}, {"__RealLiteral__": 0, "data": "0.027", "prec": 17}, {"__RealLiteral__": 0, "data": "11.297", "prec": 20}, {"__RealLiteral__": 0, "data": "1.933", "prec": 17}, {"__RealLiteral__": 0, "data": "104.258", "prec": 24}], "id": null, "projective_field": null, "embedded_related_objects": null, "projective_image_type": null, "artin_image": null, "atkin_lehner_string": null, "atkin_lehner_eigenvals": null, "artin_field": null, "projective_image": null, "artin_field_label": null, "projective_field_label": null, "fricke_eigenval": null, "artin_degree": null, "qexp": [[0, 0], [1, 0], [0, 0], [3, -3], [0, 0], [7, 0], [0, 0], [0, -10], [0, 0], [0, -9], [0, 0], [-22, 22], [0, 0], [-39, -13], [0, 0], [21, -21], [0, 0], [0, -37], [0, 0], [0, 30], [0, 0], [-30, 0], [0, 0], [-162, 162], [0, 0], [-76, 0], [0, 0], [-27, 0], [0, 0], [113, -113], [0, 0], [-196, 0], [0, 0], [0, 66], [0, 0], [0, -70], [0, 0], [-13, 13], [0, 0], [-156, 117], [0, 0], [-285, 285], [0, 0], [0, -246], [0, 0], [0, -63], [0, 0], [462, 0], [0, 0], [243, -243], [0, 0], [-111, 0], [0, 0], [-537, 0], [0, 0], [-154, 154], [0, 0], [90, 0], [0, 0], [0, 576], [0, 0], [0, 635], [0, 0], [-90, 90], [0, 0], [-273, -91], [0, 0], [202, -202], [0, 0], [0, 486], [0, 0], [0, -1086], [0, 0], [-805, 0], [0, 0], [-228, 228], [0, 0], [220, 0], [0, 0], [-884, 0], [0, 0], [-81, 81], [0, 0], [-518, 0], [0, 0], [0, -259], [0, 0], [0, -339], [0, 0], [-194, 194], [0, 0], [-130, 520], [0, 0], [-588, 588], [0, 0], [0, 210], [0, 0], [0, 1202], [0, 0], [198, 0], [0, 0]]}