# Stored data for newform 539.2.e.j, downloaded from the LMFDB on 31 March 2023. {"level_primes": [7, 11], "is_polredabs": true, "sato_tate_group": "1.2.3.c3", "rm_discs": [], "conrey_indexes": [67, 177], "cm_discs": [], "trace_hash": 188100110170437681, "level_radical": 77, "hecke_ring_index_proved": true, "self_twist_type": 0, "related_objects": [], "prim_orbit_index": 3, "is_cm": false, "hecke_orbit": 10, "analytic_conductor": 4.303936668947013, "inner_twist_count": 2, "field_disc_factorization": [[3, 2], [5, 2]], "is_rm": false, "char_order": 3, "level_is_square": false, "weight_parity": 1, "label": "539.2.e.j", "field_poly_is_real_cyclotomic": false, "is_self_twist": false, "is_twist_minimal": false, "minimal_twist": "77.2.a.d", "field_poly_is_cyclotomic": false, "dim": 4, "trace_zratio": {"__RealLiteral__": 0, "data": "0.029", "prec": 17}, "traces": [0, 4, 0, 2, -6, -4, 20, 0, 0, -6, 0, 2, 6, -4, 0, -8, 2, -2, 20, 4, 24, 0, 0, 4, -10, 2, 10, -40, 0, 16, -20, -10, 0, -2, 20, 0, 36, 8, 20, 8, 0, 36, 0, 32, 6, -12, -20, 10, 4, 0, 0, -8, 6, -8, -20, -8, 0, -32, -20, 2, 12, -10, -20, 0, -52, 4, 10, -20, -6, 48, 0, -24, 20, -6, 20, -2, -24, 0, 0, 0, 4, -22, -10, -8, 0, 8, 0, -12, 0, 4, -80, 0, -24, 20, -10, 8, 30, -16, 0, -12, 6, -14, 0, 2, -20, 0, -40, 8, 60, 0, 0, -24, 0, 8, 0, 8, -24, -14, 20, 0, 40, -2, -10, 8, -30, -48, 0, 48, 0, 16, 20, 8, 12, 0, 40, 40, -10, -24, 40, 24, 0, 40, 20, -2, 6, -16, -20, 0, -48, -28, 10, 0, 20, -28, 0, 40, 24, 4, 40, 28, 0, 0, -120, -20, -54, -4, -60, 16, 0, -28, -20, -28, -48, -30, 40, 0, 4, -12, 0, 0, -36, 48, 0, 0, -20, 16, -60, 2, -60, 0, -80, 24, -26, 12, 60, -32, 0, -8, -20, 18, 0, 0, -20, 0, 48, -36, 30, 52, -2, 8, 0, 16, -24, 8, 0, -32, 40, 0, -40, 16, 12, 12, 20, -4, 0, -12, 0, -24, 48, 0, 80, 0, 40, 8, 10, 20, 6, -80, 0, 32, -4, 14, 0, 22, 60, 0, 160, -24, 10, -64, 0, -44, 0, 8, 40, -16, 18, -12, 160, 0, -24, 16, 80, 0, 10, 32, 0, 8, -60, 0, -40, -12, -4, 0, 40, -2, -72, 4, 20, 100, 0, -32, 60, 24, 36, 32, 20, 0, 120, 22, -40, 52, -18, 20, 0, -8, 20, -20, 0, 16, 12, 0, 80, 24, -4, -20, -10, 0, 0, -56, 20, -30, 0, 12, -80, 0, 0, -28, -60, 8, 52, 16, 0, -48, -66, -2, 60, 20, 20, 0, -40, -8, 12, -16, 40, 80, 0, -64, -20, 4, -12, 10, -40, 0, 0, -48, 10, -24, -36, 20, 0, 0, 0, 4, 20, 24, -24, 0, -80, 32, 40, -10, -60, -4, 0, 24, -40, -6, -4, -34, -80, 0, -120, -12, 10, -24, -10, -56, 0, 24, 24, 64, -40, 22, -140, 0, 160, -48, 24, 4, 0, 32, 0, -144, 0, 0, 18, -36, 100, 0, 4, -28, -80, 0, -42, 88, 0, 16, 0, -22, -20, 4, -12, 0, 200, 8, -30, 32, -20, -36, 0, 0, 80, 50, 20, 2, -80, 0, -48, -8, 0, -24, -20, 16, 0, 48, 0, 32, -40, 12, 0, 0, -40, 32, 36, 8, -50, -56, 0, -96, -20, 18, -12, -40, -160, 0, 0, 4, -20, 0, 24, 4, 0, -40, 8, 40, -60, -10, 84, 0, 40, 36, -10, 16, -40, 8, 0, 128, 80, 36, 60, -28, 180, 0, 12, 16, -110, 28, -10, -160, 0, 0, 24, -28, -40, 12, -20, 0, -160, -12, 72, 48, -30, -40, 0, 56, 20, -34, -72, 72, 0, 0, 0, 0, 0, 4, 48, 20, 0, -80, 20, 16, 20, 88, -48, 0, 0, 0, 2, -2, 40, -52, 0, -56, 20, 16, -20, 40, -120, 0, -240, 12, -20, -36, 30, 0, 0, 112, -72, -10, 0, 56, -80, 0, -160, 24, -36, 60, 130, -32, 0, -16, -20, 52, -60, -8, -160, 0, -40, -24, 0, 48, -6, 128, 0, 8, 78, -48, -20, -92, 96, 0, 40, 8, 10, -28, -90, -28, 0, 0, -20, -4, -8, -78, -40, 0, 168, -68, 0, 20, 10, 68, 0, 40, 0, -4, -80, 8, 120, 0, 40, 0, 42, 32, -40, -32, 0, 80, -20, -18, -60, -80, -60, 0, 16, 38, 40, -16, 12, -56, 0, -96, 40, 88, 0, -48, -168, 0, -40, -4, 0, 40, 40, 36, 0, -64, 40, 14, 60, -2, 20, 0, 120, -68, -20, 16, 18, 76, 0, 0, -12, -28, 80, 8, 120, 0, 40, -24, -24, -52, -40, -20, 0, -32, -20, -20, 42, -6, 40, 0, 40, 104, -10, -24, -84, 96, 0, 40, 16, -12, 80, -30, 180, 0, 80, -24, -20, -28, -10, 136, 0, -80, -80, -56, -26, -40, -160, 0, 72, 12, 40, -80, 0, -80, 0, 8, 0, 96, 40, -18, -24, 0, 160, -104, -72, 8, -10, 52, 0, 132, 20, -16, 0, 22, 180, 0, -120, 20, 150, -32, 48, 32, 0, -64, -60, -56, 0, 132, -12, 0, -240, -68, -10, -52, 60, 0, 0, -8, -140, 24, 40, -14, 320, 0, -144, 28, -70, 8, -18, -100, 0, -24, 36, -32, 160, 10, -120, 0, 160, 56, 48, -12, 0, -80, 0, -16, -40, -60, 12, 0, -160, 0, 40, 20, -80, 56, 54, 24, 0, 0, 0, 12, -40, 6, 0, 0, -80, 60, 10, -60, 120, 32, 0, 16, -20, -40, 8, 32, -180, 0, 216, -36, -100, 64, 30, -4, 0, -16, 156, 20, -120, 76, 52, 0, 160, -16, -12, 120, 70, -60, 0, 28, -100, -36, -24, 28, 260, 0, -16, 56, 10, 24, 24, 60, 0, 112, 0, 26, 0, 14, 192, 0, 0, 24, 60, -60, -20, 84, 0, 0, -40, 40, 20, -96, 0, 0, -96, -56, 20, -80, -4, -64, 0, 0, 36, -24, 40, 36, -40, 0, 0, 22, 6, 0, -140, 0, 0, 32, 20, -20, 18, 12, -20, 0, 0, -48, 40, -36, -72, 124, 0, 152, -16, -4, 120, 0, 0, 0, -160, -48, -40, -40, -50, 64, 0, 16, -20, -54, 60, -24, 240, 0, -48, 60, 130, 4, 10, -20, 0, -56, 60, -34, -20, 16, 4, 0, 0, 64, 120, -4, -20, -56, 0, 56, 140, 48, -48, 12, 40, 0, 104, 2, -60, 24, 42, -48, 0, 16, 0, 16, 120, -18, -132, 0, -200, -8, 10, -28, -160, 8, 0, 80, 0, 66, -80, 8, 120, 0, 144, 32, -40, -28, -30, -176, 0, -72, -192, 34, 20, -40, 0], "hecke_ring_index_factorization": [[2, 2]], "nf_label": "4.0.225.1", "field_poly": [1, 1, 2, -1, 1], "has_non_self_twist": 1, "char_values": [539, 3, [199, 442], [2, 3]], "Nk2": 2156, "field_poly_root_of_unity": 0, "analytic_rank": 0, "char_orbit_label": "e", "weight": 2, "trace_display": [0, 2, -4, 0], "analytic_rank_proved": true, "char_parity": 1, "level_is_squarefree": false, "hecke_ring_index": 4, "level_is_prime": false, "char_is_minimal": false, "qexp_display": "q-\\beta _{2}q^{2}+(-\\beta _{1}+\\beta _{2}+\\beta _{3})q^{3}+3\\beta _{1}q^{4}+\\cdots", "self_twist_discs": [], "char_is_real": false, "field_disc": 225, "level_is_prime_power": false, "relative_dim": 2, "hecke_cutters": [[2, [25, 0, 5, 0, 1]], [3, [16, 8, 8, -2, 1]]], "space_label": "539.2.e", "level": 539, "is_self_dual": false, "inner_twists": [[1, 1, 1, 1, 1, 1, 1], [1, 1, 7, 3, 1, 3, 0]], "char_degree": 2, "char_conductor": 7, "char_orbit_index": 5, "hecke_ring_generator_nbound": 3, "hecke_orbit_code": 40532671557796379, "trace_moments": [{"__RealLiteral__": 0, "data": "0.053", "prec": 17}, {"__RealLiteral__": 0, "data": "3.782", "prec": 17}, {"__RealLiteral__": 0, "data": "1.125", "prec": 17}, {"__RealLiteral__": 0, "data": "55.337", "prec": 20}, {"__RealLiteral__": 0, "data": "30.865", "prec": 20}, {"__RealLiteral__": 0, "data": "1373.826", "prec": 27}], "id": null, "projective_field": null, "embedded_related_objects": null, "projective_image_type": null, "artin_image": null, "atkin_lehner_string": null, "atkin_lehner_eigenvals": null, "artin_field": null, "projective_image": null, "artin_field_label": null, "projective_field_label": null, "fricke_eigenval": null, "artin_degree": null, "qexp": [[0, 0, 0, 0], [1, 0, 0, 0], [0, 0, -1, 0], [0, -1, 1, 1], [0, 3, 0, 0], [-2, -2, 0, 0], [5, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, -1], [-3, -3, 2, 0], [0, 0, 2, 2], [0, -1, 0, 0], [3, 3, -3, 0], [-1, 0, 0, 1], [0, 0, 0, 0], [-2, 0, 0, -2], [1, 1, 0, 0], [0, 1, 1, 1], [0, -10, 3, 3], [2, 2, 2, 0], [6, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 1], [2, 2, -2, 0], [0, 5, -1, -1], [0, -1, 0, 0], [5, 5, 1, 0], [-10, 0, 0, -2], [0, 0, 0, 0], [4, 0, 0, -2], [-10, -10, 2, 0], [0, 5, -1, -1], [0, 0, -3, -3], [-1, -1, 1, 0], [5, 0, 0, -1], [0, 0, 0, 0], [9, 0, 0, 6], [4, 4, 2, 0], [0, -10, -2, -2], [0, -4, 0, 0], [0, 0, -2, 0], [9, 0, 0, -1], [0, 0, 0, 0], [8, 0, 0, 0], [3, 3, 0, 0], [0, 6, -4, -4], [0, 10, -2, -2], [5, 5, -1, 0], [1, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 1], [-4, -4, 0, 0], [0, -3, -3, -3], [0, 4, -2, -2], [-10, -10, 10, 0], [-2, 0, 0, 0], [0, 0, 0, 0], [-8, 0, 0, 0], [-10, -10, -4, 0], [0, -1, 1, 1], [0, -6, 6, 6], [-5, -5, -1, 0], [-5, 0, 0, -5], [0, 0, 0, 0], [-13, 0, 0, 0], [2, 2, 2, 0], [0, -5, 1, 1], [0, 10, 2, 2], [-3, -3, -3, 0], [12, 0, 0, 4], [0, 0, 0, 0], [-6, 0, 0, 2], [10, 10, -3, 0], [0, 3, -1, -1], [0, -10, -4, -4], [-1, -1, 1, 0], [-6, 0, 0, 6], [0, 0, 0, 0], [0, 0, 0, 4], [0, 0, 4, 0], [0, -2, 0, 0], [0, 11, -6, -6], [-5, -5, -9, 0], [-2, 0, 0, -6], [0, 0, 0, 0], [2, 0, 0, -2], [0, 0, -8, 0], [0, 6, 2, 2], [0, 0, -1, -1], [2, 2, 0, 0], [-20, 0, 0, -6], [0, 0, 0, 0], [-6, 0, 0, -6], [10, 10, -6, 0], [0, 5, -5, -5], [0, -4, -4, -4], [15, 15, -3, 0], [-4, 0, 0, 6], [0, 0, 0, 0], [-3, 0, 0, -2], [3, 3, 0, 0]]}