# Stored data for newform 538.2.a.c, downloaded from the LMFDB on 23 January 2025. {"Nk2": 2152, "analytic_conductor": 4.295951628744884, "analytic_rank": 0, "analytic_rank_proved": true, "atkin_lehner_eigenvals": [[2, 1], [269, -1]], "atkin_lehner_string": "+-", "char_conductor": 1, "char_degree": 1, "char_is_minimal": true, "char_is_real": true, "char_orbit_index": 1, "char_orbit_label": "a", "char_order": 1, "char_parity": 1, "char_values": [538, 1, [271], [1]], "cm_discs": [], "conrey_index": 1, "dim": 4, "field_disc": 4913, "field_disc_factorization": [[17, 3]], "field_poly": [1, 1, -6, -1, 1], "field_poly_is_cyclotomic": false, "field_poly_is_real_cyclotomic": false, "field_poly_root_of_unity": 0, "fricke_eigenval": -1, "has_non_self_twist": 0, "hecke_cutters": [[3, [-4, 10, -3, -3, 1]]], "hecke_orbit": 3, "hecke_orbit_code": 9007199288295962, "hecke_ring_generator_nbound": 7, "hecke_ring_index": 1, "hecke_ring_index_factorization": [], "hecke_ring_index_proved": true, "inner_twist_count": 1, "inner_twists": [[1, 1, 1, 1, 1, 1, 1]], "is_cm": false, "is_largest": true, "is_maximal": true, "is_polredabs": true, "is_rm": false, "is_self_dual": true, "is_self_twist": false, "is_twist_minimal": true, "label": "538.2.a.c", "level": 538, "level_is_powerful": false, "level_is_prime": false, "level_is_prime_power": false, "level_is_prime_square": false, "level_is_square": false, "level_is_squarefree": true, "level_primes": [2, 269], "level_radical": 538, "minimal_twist": "538.2.a.c", "nf_label": "4.4.4913.1", "prim_orbit_index": 1, "qexp_display": "q-q^{2}+(1-\\beta _{1})q^{3}+q^{4}+(2-\\beta _{1}-\\beta _{2}+\\cdots)q^{5}+\\cdots", "related_objects": [], "relative_dim": 4, "rm_discs": [], "sato_tate_group": "1.2.3.c1", "self_twist_discs": [], "self_twist_type": 0, "space_label": "538.2.a", "trace_display": [-4, 3, 5, -1], "trace_hash": 57629912975786012, "trace_moments": [{"__RealLiteral__": 0, "data": "0.059", "prec": 17}, {"__RealLiteral__": 0, "data": "3.927", "prec": 17}, {"__RealLiteral__": 0, "data": "0.687", "prec": 17}, {"__RealLiteral__": 0, "data": "43.436", "prec": 20}, {"__RealLiteral__": 0, "data": "19.588", "prec": 20}, {"__RealLiteral__": 0, "data": "749.872", "prec": 24}], "trace_zratio": {"__RealLiteral__": 0, "data": "0.004", "prec": 17}, "traces": [0, 4, -4, 3, 4, 5, -3, -1, -4, 3, -5, 7, 3, 4, 1, 8, 4, 4, -3, 2, 5, -5, -7, 16, -3, -1, -4, 6, -1, 0, -8, -1, -4, 1, -4, 3, 3, -2, -2, 3, -5, -1, 5, 9, 7, 8, -16, 13, 3, -15, 1, 3, 4, 28, -6, 13, 1, 10, 0, 19, 8, -20, 1, 12, 4, 5, -1, 15, 4, -5, -3, 15, -3, -7, 2, 12, 2, -6, -3, -17, 5, 4, 1, 6, -5, -29, -9, -34, -7, 20, -8, -18, 16, -5, -13, -6, -3, 3, 15, -16, -1, -12, -3, -3, -4, -2, -28, 8, 6, -23, -13, -27, -1, -3, -10, 3, 0, -31, -19, -18, -8, -19, 20, 12, -1, 12, -12, -15, -4, -23, -5, -15, 1, -26, -15, -1, -4, -13, 5, 7, 3, -20, -15, 24, 3, -17, 7, -24, -2, -1, -12, 14, -2, 3, 6, -31, 3, -35, 17, 4, -5, -4, -4, 15, -1, 14, -6, 18, 5, -14, 29, -24, 9, -10, 34, -4, 7, 10, -20, 24, 8, -19, 18, -15, -16, -11, 5, -10, 13, 24, 6, 22, 3, 2, -3, 8, -15, -24, 16, -13, 1, 7, 12, 17, 3, -14, 3, -5, 4, 12, 2, -18, 28, 24, -8, 41, -6, -4, 23, 33, 13, 4, 27, 34, 1, -22, 3, 17, 10, -19, -3, -13, 0, 45, 31, 29, 19, -34, 18, -9, 8, -58, 19, 36, -20, -40, -12, 36, 1, 30, -12, 1, 12, 28, 15, -26, 4, 46, 23, 26, 5, -17, 15, -9, -1, 52, 26, -2, 15, 4, 1, 4, 4, -5, 13, 28, -5, -7, -7, 12, -3, -44, 20, 51, 15, 4, -24, -21, -3, 38, 17, -2, -7, 8, 24, 11, 2, -32, 1, 16, 12, 19, -14, 25, 2, -25, -3, -15, -6, -32, 31, -27, -3, 18, 35, -2, -17, 59, -4, 0, 5, -11, 4, 36, 4, 33, -15, -47, 1, 1, -14, 47, 6, 7, -18, 23, -5, -13, 14, 87, -29, -23, 24, -2, -9, -2, 10, 23, -34, -1, 4, -62, -7, -26, -10, 74, 20, -5, -24, -15, -8, -24, 19, -10, -18, -47, 15, -5, 16, -5, 11, 10, -5, -25, 10, 9, -13, -17, -24, 5, -6, -75, -22, 2, -3, 1, -2, -40, 3, -46, -8, 50, 15, -24, 24, -17, -16, -13, 13, 6, -1, -23, -7, -18, -12, -12, -17, -12, -3, 28, 14, -48, -3, 25, 5, -52, -4, -50, -12, 28, -2, 22, 18, -54, -28, -103, -24, 22, 8, 35, -41, -6, 6, 26, 4, -51, -23, 8, -33, 3, -13, -41, -4, 38, -27, -9, -34, -5, -1, 0, 22, -6, -3, 19, -17, 3, -10, 4, 19, 40, 3, -75, 13, 12, 0, -36, -45, 26, -31, 9, -29, -56, -19, 54, 34, 8, -18, 4, 9, -85, -8, -36, 58, -37, -19, 8, -36, 12, 20, 92, 40, -5, 12, 17, -36, -20, -1, 26, -30, 84, 12, -12, -1, 27, -12, 36, -28, -2, -15, 44, 26, -45, -4, -48, -46, -25, -23, 61, -26, -101, -5, -32, 17, 19, -15, 14, 9, 84, 1, 6, -52, 78, -26, 16, 2, -7, -15, 103, -4, -22, -1, -23, -4, -10, -4, -67, 5, 35, -13, 19, -28, -34, 5, -17, 7, -38, 7, 90, -12, 26, 3, -33, 44, 4, -20, 60, -51, -35, -15, 83, -4, -42, 24, -26, 21, -55, 3, 28, -38, -7, -17, -10, 2, 66, 7, -26, -8, -89, -24, 8, -11, 16, -2, 11, 32, 37, -1, 71, -16, -22, -12, 7, -19, 24, 14, 6, -25, 17, -2, -34, 25, 47, 3, 39, 15, -2, 6, 56, 32, 88, -31, 24, 27, -39, 3, 54, -18, 26, -35, -2, 2, -45, 17, 46, -59, -6, 4, 2, 0, 41, -5, -5, 11, 136, -4, 18, -36, -33, -4, -5, -33, -3, 15, 18, 47, -74, -1, 16, -1, -7, 14, -21, -47, -31, -6, 10, -7, 51, 18, 0, -23, -52, 5, 40, 13, -95, -14, 10, -87, 80, 29, 85, 23, -68, -24, -63, 2, -27, 9, 28, 2, 28, -10, 21, -23, -55, 34, 50, 1, 21, -4, -40, 62, -52, 7, 9, 26, 20, 10, -1, -74, -102, -20, 30, 5, 47, 24, -45, 15, 18, 8, -29, 24, -69, -19, -68, 10, 28, 18, 15, 47, -110, -15, 39, 5, -64, -16, 22, 5, -11, -11, 10, -10, 23, 5, 88, 25, 98, -10, -36, -9, 29, 13, 22, 17, 9, 24, 23, -5, -13, 6, 42, 75, 27, 22, 76, -2, -49, 3, 12, -1, 43, 2, 2, 40, -106, -3, -23, 46, 42, 8, 39, -50, 17, -15, -82, 24, -13, -24, 57, 17, -29, 16, -54, 13, 56, -13, 22, -6, -55, 1, -53, 23, -42, 7, 29, 18, 3, 12, 22, 12, 15, 17, 37, 12, -11, 3, -38, -28, 29, -14, 32, 48, -58, 3, 72, -25, 47, -5, -20, 52, -103, 4, 36, 50, -37, 12, 58, -28, -38, 2, -14, -22, 1, -18, -26, 54, -8, 28, 153, 103, 26, 24, -88, -22, 4, -8, -140, -35, -34, 41, 14, 6, 15, -6, -123, -26, 54, -4, 17, 51, -2, 23, 151, -8, -54, 33, 135, -3, -62, 13, 67, 41, 20, 4, 21, -38, 2, 27, 25, 9, -27, 34, -2, 5, 115, 1, 29, 0, 34, -22, -40, 6, -41, 3, 6, -19, -41, 17, 42, -3, -22, 10, -66, -4, -40, -19, -43, -40, -75, -3, 27, 75, -2, -13, -59, -12, -100, 0, 58, 36, 18, 45, 52, -26, -123, 31, -43, -9, 22, 29, -2, 56, -4, 19, 13, -54, -69, -34, 10, -8, 57, 18, 14, -4, 2, -9, -34, 85, -35, 8, -43, 36, -79, -58, 45, 37, -94, 19, 10, -8, 29, 36, 11, -12, 46, -20, 50, -92, 52, -40, 4, 5, -103, -12, -13, -17, -46, 36, 36, 20, -21, 1, 31, -26, 22, 30, 30, -84, 48, -12], "weight": 2, "weight_parity": 1, "id": null, "artin_degree": null, "artin_field": null, "artin_field_label": null, "artin_image": null, "embedded_related_objects": null, "projective_field": null, "projective_field_label": null, "projective_image": null, "projective_image_type": null, "qexp": [[0, 0, 0, 0], [1, 0, 0, 0], [-1, 0, 0, 0], [1, -1, 0, 0], [1, 0, 0, 0], [2, -1, -1, 1], [-1, 1, 0, 0], [0, 0, 0, 1], [-1, 0, 0, 0], [1, -1, 1, 1], [-2, 1, 1, -1], [2, 0, -1, 0], [1, -1, 0, 0], [1, 0, -1, -1], [0, 0, 0, -1], [3, -2, -1, 1], [1, 0, 0, 0], [-1, 2, 3, -3], [-1, 1, -1, -1], [0, 0, 0, -2], [2, -1, -1, 1], [-1, -1, 0, 0], [-2, 0, 1, 0], [3, 2, 1, -1], [-1, 1, 0, 0], [2, -3, -4, 2], [-1, 0, 1, 1], [1, 0, 3, 1], [0, 0, 0, 1], [-1, 3, 1, 0], [-3, 2, 1, -1], [-2, 2, 3, -2], [-1, 0, 0, 0], [1, -1, -2, 0], [1, -2, -3, 3], [0, 1, 1, -1], [1, -1, 1, 1], [-1, 2, 1, 1], [0, 0, 0, 2], [1, 1, -2, 0], [-2, 1, 1, -1], [-1, 0, 1, -2], [1, 1, 0, 0], [4, 0, -4, 3], [2, 0, -1, 0], [1, 0, 3, -1], [-3, -2, -1, 1], [4, 1, -3, 1], [1, -1, 0, 0], [-5, 2, 1, -2], [-2, 3, 4, -2], [-1, 1, 4, -2], [1, 0, -1, -1], [8, 0, -2, 2], [-1, 0, -3, -1], [6, -3, -5, 3], [0, 0, 0, -1], [2, 2, 0, 0], [1, -3, -1, 0], [4, 1, 3, 1], [3, -2, -1, 1], [-5, 0, 1, 1], [2, -2, -3, 2], [2, 1, 1, -2], [1, 0, 0, 0], [4, -3, -5, 3], [-1, 1, 2, 0], [4, 0, 0, 1], [-1, 2, 3, -3], [-1, -3, 0, -2], [0, -1, -1, 1], [7, -4, -4, 5], [-1, 1, -1, -1], [-4, 0, 4, -5], [1, -2, -1, -1], [5, 0, -5, 3], [0, 0, 0, -2], [-1, 0, 0, 2], [-1, -1, 2, 0], [-4, 1, -3, -1], [2, -1, -1, 1], [0, -2, 3, -3], [1, 0, -1, 2], [-2, 2, 8, -4], [-1, -1, 0, 0], [-10, 3, 7, -1], [-4, 0, 4, -3], [-9, 0, -1, -3], [-2, 0, 1, 0], [3, 3, 1, -4], [-1, 0, -3, 1], [-3, -2, -1, 3], [3, 2, 1, -1], [-3, 1, 4, -2], [-4, -1, 3, -1], [0, -2, -2, 2], [-1, 1, 0, 0], [1, 0, 4, 5], [5, -2, -1, 2], [-4, 1, 0, 1], [2, -3, -4, 2]]}