# Stored data for newform 285.2.i.d, downloaded from the LMFDB on 04 December 2023. {"label": "285.2.i.d", "space_label": "285.2.i", "level": 285, "weight": 2, "hecke_orbit": 4, "hecke_orbit_code": 13511348671480093, "dim": 4, "is_polredabs": true, "nf_label": "4.0.576.2", "trace_hash": 1333552326780427403, "analytic_rank": 0, "is_twist_minimal": true, "hecke_cutters": [[2, [1, -2, 5, 2, 1]]], "qexp_display": "q+(-1+\\beta _{1}-\\beta _{2})q^{2}+(1+\\beta _{2})q^{3}+\\cdots", "char_order": 3, "char_parity": 1, "char_degree": 2, "char_conductor": 19, "char_orbit_label": "i", "char_is_real": false, "Nk2": 1140, "analytic_conductor": 2.275736457606491, "hecke_ring_index": 1, "level_radical": 285, "field_poly_is_cyclotomic": false, "field_poly_root_of_unity": 0, "field_poly_is_real_cyclotomic": false, "hecke_ring_index_proved": true, "self_twist_type": 0, "is_self_dual": false, "is_self_twist": false, "is_cm": false, "is_rm": false, "trace_zratio": {"__RealLiteral__": 0, "data": "0.020", "prec": 17}, "analytic_rank_proved": true, "char_values": [285, 3, [191, 172, 211], [3, 3, 2]], "hecke_ring_generator_nbound": 3, "inner_twist_count": 2, "level_primes": [3, 5, 19], "conrey_indexes": [106, 121], "field_disc": 576, "field_disc_factorization": [[2, 6], [3, 2]], "field_poly": [4, 0, 2, 0, 1], "hecke_ring_index_factorization": [], "trace_moments": [{"__RealLiteral__": 0, "data": "0.003", "prec": 17}, {"__RealLiteral__": 0, "data": "3.869", "prec": 17}, {"__RealLiteral__": 0, "data": "0.000", "prec": 17}, {"__RealLiteral__": 0, "data": "55.101", "prec": 20}, {"__RealLiteral__": 0, "data": "0.000", "prec": 17}, {"__RealLiteral__": 0, "data": "1370.815", "prec": 27}], "related_objects": [], "self_twist_discs": [], "cm_discs": [], "rm_discs": [], "relative_dim": 2, "sato_tate_group": "1.2.3.c3", "trace_display": [-2, 2, 2, -4], "traces": [0, 4, -2, 2, -2, 2, 2, -4, 12, -2, 2, 0, -4, -2, 10, -2, -6, 8, 4, 16, -4, -2, -8, -4, 6, -2, 20, -4, 18, -8, 4, -20, 6, 0, 16, -2, -2, -20, -2, -4, 6, 0, -10, -10, -16, -4, 24, 12, 6, 8, 4, -8, -18, 4, 2, 0, -28, 2, -16, 0, -2, -6, 10, 2, -28, -4, 8, 6, -48, -8, -10, -20, -6, -2, 18, -4, -14, -32, 10, 18, 6, -2, 8, -32, 36, -8, -2, -16, 16, -8, 2, 18, -20, -10, -40, 2, 12, 12, -20, 0, -2, 4, 32, 28, -14, 2, -8, 56, 2, 12, 8, -10, 6, 16, 14, -8, 24, -2, 0, -24, -6, -12, 76, 0, 10, -4, -20, 8, 10, 10, 10, 4, -32, -16, -60, -2, 32, 4, 12, 10, 36, 24, -20, -16, 12, -16, 22, 4, 26, 8, 2, 64, 48, -16, 24, -10, 18, 34, 34, 8, 12, 20, -2, 4, -32, 0, 16, 16, -14, 8, 32, -14, -12, 8, -8, 2, 0, 0, -32, 8, 2, -28, -68, -12, -20, -10, -10, 16, 28, 4, 14, -56, -14, 10, 12, -2, -36, 48, 16, 34, -6, 12, -88, -24, -24, 0, -6, -4, 12, 0, -20, -22, 4, 20, -28, 10, -12, 20, -20, 2, -32, -48, -18, -6, 2, -2, -8, -8, -16, 4, 12, -16, -8, 28, -10, 24, 0, -18, -64, -8, 12, -10, 6, 2, -70, 4, 16, -14, -60, -16, 2, 44, 18, -16, -112, -16, 26, 28, -4, 52, 18, -8, 28, -12, 8, 8, 10, -16, 54, 8, -2, -16, 24, 36, 40, 0, 20, 24, 44, 10, -14, -20, -20, 8, 40, -14, 48, -16, 6, -14, -8, -12, -92, 24, 20, 0, -76, 0, 16, -20, 2, -6, -48, 8, -6, -12, 16, 24, 32, 14, -10, -16, -28, 12, 26, 4, -100, 12, -4, 32, -14, 28, -88, 8, 4, -2, 38, -12, 8, -28, 16, -44, 16, 10, 64, 12, -6, -18, -8, 8, -24, 0, 16, -44, -22, -4, 40, 20, -24, -36, -20, 2, -8, 40, 0, 20, 40, 24, 36, -24, -12, 52, -8, -6, 50, 2, 38, 6, 24, 0, -18, -4, 20, -24, 48, -2, 44, 24, -10, 52, -16, 16, 20, 0, -10, -16, -46, 20, -24, -20, -10, -64, 56, -4, -8, -18, -16, 42, -68, -2, 12, 0, -30, 10, 84, 2, 16, -32, -32, -12, 16, 8, 2, 0, -12, -16, -2, 20, -8, -32, 18, 4, -54, 12, 12, -16, -40, 70, -28, -32, -4, -12, 6, 74, -50, -8, 104, -28, 44, -34, 8, -4, 64, -8, 52, -16, 2, -8, 60, 64, -2, 16, -8, 32, -44, 36, 6, -28, -18, -8, 20, -32, -24, -12, 48, 10, -4, 16, 36, -54, -20, -34, 0, 16, 68, -14, 208, 4, -60, 12, 6, 26, 20, 40, 6, -12, -4, -48, -50, 2, 20, -36, -16, 0, 80, 0, 30, 20, -16, 26, 2, 32, -120, -56, 14, 8, 64, -8, 104, -4, 16, -46, -108, -16, -40, 14, -6, 16, -74, -8, -28, 48, 8, -14, -104, 4, 44, -40, 0, 22, -4, 0, 126, -32, -16, 28, 42, 4, 24, 64, 4, -10, 0, -56, 32, -12, -34, -2, -44, -6, 16, -56, -40, -50, -12, 10, -54, 52, -20, -12, -6, -16, 136, 8, -28, 8, -40, 2, -60, -48, 16, 12, -32, -28, -24, -4, 14, -168, 156, -10, -24, 32, 24, 0, 18, 2, -44, 24, -72, -80, 0, 24, 30, 48, 8, 24, -48, 68, -44, 0, -12, -164, 26, 6, -64, -6, -44, -36, 42, -48, 38, 28, 24, 12, 8, 0, -112, -40, 6, 108, 20, 4, 8, -40, 6, -2, -24, 0, -36, -56, -10, -30, 70, 22, -88, 16, -4, -36, 0, 40, -10, -28, 28, -6, 68, 20, 112, -16, -6, 0, -10, 10, 78, 24, -40, -4, 0, 4, 168, -32, -16, -20, 38, -24, -96, -2, -36, 16, -80, 6, -30, -64, 4, -84, 6, 2, 48, 8, 8, -12, -32, -4, 40, 120, -2, 8, -2, 2, -30, 4, -12, 80, -144, 16, -52, 20, -16, -16, -46, -28, 18, -36, -20, -80, -32, 12, -52, -84, 0, -18, -40, -36, 0, 20, -128, -32, 76, -4, -32, 52, 6, 4, 22, -20, 36, -8, -6, -78, 70, 4, 44, 24, 70, -8, 164, -4, 4, 48, 8, 38, 52, -16, 40, -40, -30, -8, -4, 16, -160, -56, -2, -30, -72, 88, 8, 32, -18, 38, -58, -32, 6, 48, -56, 52, 12, -8, -96, 0, 52, -6, -24, 56, 204, 44, -2, 10, 36, 26, 184, 0, 36, 0, 80, 8, -12, -34, 56, 12, 8, 12, 68, -16, -8, -70, 34, 4, 34, -88, -70, 128, 6, -8, -64, 48, -54, 40, -100, -8, 52, 104, -4, -16, 8, 16, 56, 2, 48, -10, 24, 18, -16, 104, 20, 16, 68, 0, 0, -16, 40, -156, -16, 12, 30, 48, 22, 32, -112, 20, 48, -28, 14, -38, -12, -40, 172, -8, 20, 12, -24, -8, 16, 36, 20, 42, -252, -16, 168, -68, 24, -2, -6, 16, 72, -56, -6, -8, -132, -28, -90, 32, 8, 54, 4, -24, 96, 4, -46, 50, -34, 12, 0, 104, 40, 38, 104, 0, -64, -8, -38, -104, -16, 0, -20, 84, 32, 4, -98, 20, -40, 40, 4, 32, 16, 6, 48, -56, 48, 72, -92, 4, -34, 96, 42, 0, 22, -6, -34, -52, -16, -12, -40, -24, 8, 40, 64, 10, -50, -14, 40, 28, -20, 32, 72, -8, 48, -16, -14, 66, 204, 24, -28, 16, 52, -32, 0, 2, -24, 52, -50, -92, 16, 24, -112, 16, 4, -28, -124, 64, -72, 44, 14, -24, -148, -28, -10, -10, -44, 6, -36, -56, 24, 36, 2, 54, 40, 2, 36, -24, -38, 48, -72, -24, -20, 40, -8, 24, -32, -56, -18, 8, 8, 70, -30, -22, 100, 68, 32, 42, 42, 20, -12], "weight_parity": 1, "has_non_self_twist": 1, "level_is_prime": false, "level_is_prime_power": false, "level_is_square": false, "level_is_squarefree": true, "inner_twists": [[1, 1, 1, 1, 1, 1, 1], [1, 1, 19, 3, 1, 3, 0]], "char_orbit_index": 9, "prim_orbit_index": 3, "minimal_twist": "285.2.i.d", "char_is_minimal": true, "conrey_index": 106, "id": null, "fricke_eigenval": null, "atkin_lehner_string": null, "projective_image": null, "projective_image_type": null, "artin_degree": null, "artin_image": null, "artin_field_label": null, "projective_field_label": null, "atkin_lehner_eigenvals": null, "projective_field": null, "artin_field": null, "embedded_related_objects": null, "qexp": [[0, 0, 0, 0], [1, 0, 0, 0], [-1, 1, -1, 0], [1, 0, 1, 0], [0, -2, 1, -2], [1, 0, 1, 0], [0, 1, -1, 1], [-1, 0, 0, -2], [3, 0, 0, 1], [0, 0, 1, 0], [0, 1, -1, 1], [0, 0, 0, 2], [-1, 0, 0, -2], [0, -2, 1, -2], [5, -3, 5, 0], [0, 0, 1, 0], [-3, 0, -3, 0], [4, -2, 4, 0], [1, 0, 0, 1], [5, 0, 2, 0], [-1, 0, 0, -2], [-1, 2, -1, 0], [-4, 2, -4, 0], [0, -2, 2, -2], [3, -1, 3, 0], [0, 0, 1, 0], [5, 0, 0, 3], [-1, 0, 0, 0], [0, 4, -9, 4], [0, 4, 4, 4], [1, 0, 0, 1], [-5, 0, 0, 0], [0, -1, -3, -1], [0, -2, 0, 0], [0, 6, -8, 6], [-1, 2, -1, 0], [-1, 2, -1, 0], [-5, 0, 0, -2], [-3, 5, -5, 2], [-1, 0, 0, -2], [3, -1, 3, 0], [0, -2, 0, 0], [0, -3, 5, -3], [-5, -2, -5, 0], [0, -2, 8, -2], [-1, 0, 0, 0], [6, 0, 0, 4], [0, 2, -6, 2], [0, 0, -3, 0], [2, 0, 0, 4], [1, 0, 0, 1], [0, -2, 4, -2], [-9, 4, -9, 0], [0, 0, -2, 0], [1, -1, 1, 0], [0, -2, 0, 0], [-7, 0, 0, -7], [3, 0, 5, 0], [-4, 0, 0, 0], [0, 0, 0, 0], [-1, 2, -1, 0], [0, -8, 3, -8], [5, -5, 5, 0], [0, 2, -1, 2], [-7, 0, 0, -2], [-1, 0, 0, -2], [0, 2, -4, 2], [0, 6, -3, 6], [-12, 0, 0, -10], [-2, 0, 0, -2], [0, -3, 5, -3], [-10, 0, -10, 0], [0, -1, 3, -1], [-1, -6, -1, 0], [9, -7, 9, 0], [-1, 0, 0, 0], [-2, -6, 3, -10], [-8, 0, 0, -2], [5, -3, 5, 0], [9, -4, 9, 0], [0, 0, -3, 0], [-1, 0, -1, 0], [0, 2, -4, 2], [-8, 0, 0, 0], [9, 0, 0, 4], [0, -2, 4, -2], [0, -3, 1, -3], [-4, 0, 0, 4], [4, 0, 0, 6], [0, 6, 4, 6], [1, -1, 1, 0], [0, 4, -9, 4], [-10, 6, -10, 0], [-5, 0, -5, 0], [-10, 0, 0, -8], [3, 0, 5, 0], [3, 0, 0, -1], [6, 0, 6, 0], [-10, 6, -10, 0], [0, -2, 0, -2], [-1, 2, -1, 0]]}