# SageMath code for working with modular form 8190.2.a.bm # Compute space of new eigenforms: from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8190, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))] # Compute space of new eigenforms: from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8190, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a") # select newform: traces = [1,1,0,1,1,0,-1,1,0,1,-4,0,1,-1,0,1,-6,0,4,1,0,-4,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces) # q-expansion: f.q_expansion() # note that sage often uses an isomorphic number field