# SageMath code for working with modular form 490.4.e.s # Compute space of new eigenforms: from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(490, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))] # Compute space of new eigenforms: from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(490, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 4, names="a") # select newform: traces = [2,2,10,-4,-5,40,0,-16,-73,10,-53] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces) # q-expansion: f.q_expansion() # note that sage often uses an isomorphic number field