# SageMath code for working with modular form 45760.2.a.by # Compute space of new eigenforms: from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(45760, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))] # Compute space of new eigenforms: from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(45760, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 2, names="a") # select newform: traces = [1,0,3,0,-1,0,-3,0,6,0,-1,0,-1,0,-3,0,-1,0,5,0,-9,0,-4,0,1,0, 9,0,-7,0,5,0,-3,0,3,0,3,0,-3,0,-8,0,6,0,-6,0,-4,0,2,0,-3,0,9,0,1,0,15, 0,10,0,11,0,-18,0,1,0,-4,0,-12,0,-9,0,-2,0,3,0,3,0,4,0,9,0,6,0,1,0,-21, 0,7,0,3,0,15,0,-5,0,4,0,-6,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces) # q-expansion: f.q_expansion() # note that sage often uses an isomorphic number field