# SageMath code for working with modular form 45486.2.a.bf # Compute space of new eigenforms: from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(45486, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))] # Compute space of new eigenforms: from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(45486, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a") # select newform: traces = [1,1,0,1,0,0,1,1,0,0,-6,0,-2,1,0,1,0,0,0,0,0,-6,6,0,-5,-2,0,1, 6,0,-8,1,0,0,0,0,10,0,0,0,-6,0,-4,-6,0,6,-6,0,1,-5,0,-2,6,0,0,1,0,6,12, 0,2,-8,0,1,0,0,4,0,0,0,0,0,2,10,0,0,-6,0,4,0,0,-6,-6,0,0,-4,0,-6,-6,0, -2,6,0,-6,0,0,-14,1,0,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces) # q-expansion: f.q_expansion() # note that sage often uses an isomorphic number field