# SageMath code for working with modular form 36992.2.a.bj # Compute space of new eigenforms: from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(36992, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a") # select newform: traces = [3,0,0,0,-2,0,2,0,-1,0,6,0,4,0,-6,0,0,0,-2,0,-2,0,0,0,-3,0,6, 0,-6,0,12,0,-8,0,-6,0,-2,0,-6,0,10,0,-8,0,-10,0,-18,0,-13,0,0,0,6,0,2, 0,8,0,-16,0,2,0,4,0,8,0,6,0,22,0,6,0,2,0,16,0,6,0,24,0,-13,0,-8,0,0,0, 14,0,-2,0,-2,0,10,0,20,0,-6,0,-8,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces) # q-expansion: f.q_expansion() # note that sage often uses an isomorphic number field