# SageMath code for working with modular form 350.4.a.v # Compute space of new eigenforms: from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(350, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))] # Compute space of new eigenforms: from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(350, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a") # select newform: traces = [1,2,8,4,0,16,7,8,37,0,68] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces) # q-expansion: f.q_expansion() # note that sage often uses an isomorphic number field