# SageMath code for working with modular form 34272.2.a.cg # Compute space of new eigenforms: from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(34272, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))] # Compute space of new eigenforms: from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(34272, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 2, names="a") # select newform: traces = [4,0,0,0,-1,0,-4,0,0,0,3,0,-7,0,0,0,4,0,9,0,0,0,-5,0,-1,0,0,0, 6,0,-2,0,0,0,1,0,-18,0,0,0,11,0,7,0,0,0,-6,0,4,0,0,0,10,0,7,0,0,0,-14, 0,-20,0,0,0,7,0,8,0,0,0,-24,0,0,0,0,0,-3,0,4,0,0,0,-10,0,-1,0,0,0,-10, 0,7,0,0,0,-1,0,4,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces) # q-expansion: f.q_expansion() # note that sage often uses an isomorphic number field