# SageMath code for working with modular form 32490.2.a.cf # Compute space of new eigenforms: from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(32490, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))] # Compute space of new eigenforms: from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(32490, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a") # select newform: traces = [2,-2,0,2,-2,0,-2,-2,0,2,1,0,1,2,0,2,0,0,0,-2,0,-1,-1,0,2,-1, 0,-2,-12,0,3,-2,0,0,2,0,2,0,0,2,1,0,9,1,0,1,0,0,-12,-2,0,1,11,0,-1,2,0, 12,-10,0,-3,-3,0,2,-1,0,13,0,0,-2,2,0,-15,-2,0,0,-1,0,5,-2,0,-1,-12,0, 0,-9,0,-1,9,0,-1,-1,0,0,0,0,20,12,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces) # q-expansion: f.q_expansion() # note that sage often uses an isomorphic number field