# SageMath code for working with modular form 30345.2.a.r # Compute space of new eigenforms: from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(30345, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))] # Compute space of new eigenforms: from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(30345, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a") # select newform: traces = [1,0,1,-2,1,0,-1,0,1,0,-2,-2,-5,0,1,4,0,0,2,-2,-1,0,1,0,1,0,1, 2,-8,0,-1,0,-2,0,-1,-2,3,0,-5,0,7,0,0,4,1,0,-1,4,1,0,0,10,-8,0,-2,0,2, 0,0,-2,7,0,-1,-8,-5,0,16,0,1,0,10,0,8,0,1,-4,2,0,6,4,1,0,-13,2,0,0,-8, 0,-2,0,5,-2,-1,0,2,0,6,0,-2,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces) # q-expansion: f.q_expansion() # note that sage often uses an isomorphic number field