# SageMath code for working with modular form 2880.2.w.j # Compute space of new eigenforms: from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2880, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 2, 1])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))] # Compute space of new eigenforms: from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2880, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 2, 1])) N = Newforms(chi, 2, names="a") # select newform: traces = [4,0,0,0,0,0,8,0,0,0,0,0,-12,0,0,0,0,0,0,0,0,0,0,0,-16,0,0,0, 0,0,-32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(31)] == traces) # q-expansion: f.q_expansion() # note that sage often uses an isomorphic number field