# SageMath code for working with modular form 27885.2.a.ec # Compute space of new eigenforms: from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(27885, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))] # Compute space of new eigenforms: from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(27885, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a") # select newform: traces = [36,3,36,45,36,3,20,9,36,3,36,45,0,18,36,55,6,3,40,45,20,3,26, 9,36,0,36,58,5,3,34,26,36,38,20,45,46,24,0,9,-1,18,-12,45,36,46,22,55, 68,3,6,0,31,3,36,20,40,27,46,45,2,3,20,35,0,3,79,-25,26,18,28,9,76,-18, 36,68,20,0,22,55,36,-54,34,58,6,30,5,9,34,3,0,42,34,-27,40,26,92,0,36, 45] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces) # q-expansion: f.q_expansion() # note that sage often uses an isomorphic number field