# SageMath code for working with modular form 27378.2.a.p # Compute space of new eigenforms: from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(27378, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))] # Compute space of new eigenforms: from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(27378, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a") # select newform: traces = [1,1,0,1,0,0,-2,1,0,0,-3,0,0,-2,0,1,3,0,1,0,0,-3,6,0,-5,0,0,-2, -6,0,4,1,0,3,0,0,4,1,0,0,9,0,-1,-3,0,6,-6,0,-3,-5,0,0,-12,0,0,-2,0,-6, 3,0,8,4,0,1,0,0,-5,3,0,0,-12,0,-11,4,0,1,6,0,-4,0,0,9,12,0,0,-1,0,-3,6, 0,0,6,0,-6,0,0,-5,-3,0,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces) # q-expansion: f.q_expansion() # note that sage often uses an isomorphic number field