# SageMath code for working with modular form 25410.2.a.fi # Compute space of new eigenforms: from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(25410, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))] # Compute space of new eigenforms: from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(25410, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a") # select newform: traces = [4,4,4,4,-4,4,-4,4,4,-4,0,4,-1,-4,-4,4,-5,4,-2,-4,-4,0,2,4,4, -1,4,-4,-15,-4,7,4,0,-5,4,4,-5,-2,-1,-4,-3,-4,-5,0,-4,2,1,4,4,4,-5,-1, 17,4,0,-4,-2,-15,-1,-4,-33,7,-4,4,1,0,7,-5,2,4,-5,4,-21,-5,4,-2,0,-1,-2, -4,4,-3,-8,-4,5,-5,-15,0,-27,-4,1,2,7,1,2,4,5,4,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces) # q-expansion: f.q_expansion() # note that sage often uses an isomorphic number field