# SageMath code for working with modular form 25410.2.a.cx # Compute space of new eigenforms: from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(25410, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))] # Compute space of new eigenforms: from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(25410, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a") # select newform: traces = [1,1,1,1,1,1,1,1,1,1,0,1,0,1,1,1,-4,1,-4,1,1,0,-6,1,1,0,1,1,0, 1,-6,1,0,-4,1,1,-6,-4,0,1,6,1,-4,0,1,-6,-4,1,1,1,-4,0,2,1,0,1,-4,0,10, 1,6,-6,1,1,0,0,-2,-4,-6,1,-12,1,-8,-6,1,-4,0,0,4,1,1,6,-4,1,-4,-4,0,0, -6,1,0,-6,-6,-4,-4,1,-2,1,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces) # q-expansion: f.q_expansion() # note that sage often uses an isomorphic number field