# SageMath code for working with modular form 25350.2.a.q # Compute space of new eigenforms: from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(25350, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))] # Compute space of new eigenforms: from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(25350, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a") # select newform: traces = [1,-1,-1,1,0,1,2,-1,1,0,-6,-1,0,-2,0,1,3,-1,-2,0,-2,6,6,1,0,0, -1,2,3,0,4,-1,6,-3,0,1,-7,2,0,0,3,2,10,-6,0,-6,6,-1,-3,0,-3,0,-3,1,0,-2, 2,-3,0,0,-7,-4,2,1,0,-6,-10,3,-6,0,-6,-1,-13,7,0,-2,-12,0,-4,0,1,-3,-6, -2,0,-10,-3,6,-18,0,0,6,-4,-6,0,1,14,3,-6,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces) # q-expansion: f.q_expansion() # note that sage often uses an isomorphic number field