# SageMath code for working with modular form 22848.2.a.fn # Compute space of new eigenforms: from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(22848, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 2, names="a") # select newform: traces = [4,0,4,0,5,0,4,0,4,0,-1,0,-1,0,5,0,4,0,7,0,4,0,13,0,7,0,4,0,0, 0,18,0,-1,0,5,0,10,0,-1,0,11,0,-1,0,5,0,-2,0,4,0,4,0,-2,0,-3,0,7,0,6,0, 6,0,4,0,7,0,0,0,13,0,16,0,-10,0,7,0,-1,0,4,0,4,0,-2,0,5,0,0,0,2,0,-1,0, 18,0,17,0,-10,0,-1,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces) # q-expansion: f.q_expansion() # note that sage often uses an isomorphic number field