# SageMath code for working with modular form 2112.3.j.d # Compute space of new eigenforms: from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2112, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))] # Compute space of new eigenforms: from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2112, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 3, names="a") # select newform: traces = [4,0,0,0,-4,0,0,0,12,0,20,0,0,0,36,0,0,0,0,0,0,0,92,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(25)] == traces) # q-expansion: f.q_expansion() # note that sage often uses an isomorphic number field