# SageMath code for working with modular form 1980.2.z.b # Compute space of new eigenforms: from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1980, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))] # Compute space of new eigenforms: from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1980, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 2, names="a") # select newform: traces = [8,0,0,0,-2,0,-3,0,0,0,5,0,-8,0,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces) # q-expansion: f.q_expansion() # note that sage often uses an isomorphic number field