# SageMath code for working with modular form 10944.2.a.ba # Compute space of new eigenforms: from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(10944, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a") # select newform: traces = [1,0,0,0,-1,0,3,0,0,0,-5,0,4,0,0,0,3,0,-1,0,0,0,8,0,-4,0,0,0, -2,0,-4,0,0,0,-3,0,-10,0,0,0,-10,0,1,0,0,0,-1,0,2,0,0,0,-4,0,5,0,0,0,-6, 0,13,0,0,0,-4,0,-12,0,0,0,2,0,9,0,0,0,-15,0,-8,0,0,0,12,0,-3,0,0,0,-12, 0,12,0,0,0,1,0,-8,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces) # q-expansion: f.q_expansion() # note that sage often uses an isomorphic number field