# SageMath code for working with modular form 10816.2.a.bk # Compute space of new eigenforms: from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(10816, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a") # select newform: traces = [1,0,3,0,-3,0,1,0,6,0,4,0,0,0,-9,0,5,0,6,0,3,0,6,0,4,0,9,0,4, 0,0,0,12,0,-3,0,-3,0,0,0,-12,0,-3,0,-18,0,-7,0,-6,0,15,0,2,0,-12,0,18, 0,-2,0,12,0,6,0,0,0,4,0,18,0,11,0,-6,0,12,0,4,0,6,0,9,0,10,0,-15,0,12, 0,-6,0,0,0,0,0,-18,0,0,0,24,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces) # q-expansion: f.q_expansion() # note that sage often uses an isomorphic number field