Learn more

Refine search


Results (1-50 of 1853 matches)

Next   Download to        
Label Char Prim Dim $A$ Field CM Traces Fricke sign Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1.34.a.a 1.a 1.a $2$ $6.898$ \(\mathbb{Q}[x]/(x^{2} - \cdots)\) None \(-121680\) \(37919880\) \(-181061536500\) \(-67\!\cdots\!00\) $+$ $\mathrm{SU}(2)$ \(q+(-60840-\beta )q^{2}+(18959940+312\beta )q^{3}+\cdots\)
1.36.a.a 1.a 1.a $3$ $7.760$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None \(139656\) \(-104875308\) \(892652054010\) \(87\!\cdots\!56\) $+$ $\mathrm{SU}(2)$ \(q+(46552+\beta _{1})q^{2}+(-34958436+\cdots)q^{3}+\cdots\)
1.38.a.a 1.a 1.a $2$ $8.671$ \(\mathbb{Q}[x]/(x^{2} - \cdots)\) None \(-194400\) \(13991400\) \(55\!\cdots\!00\) \(-34\!\cdots\!00\) $+$ $\mathrm{SU}(2)$ \(q+(-97200-\beta )q^{2}+(6995700+72\beta )q^{3}+\cdots\)
1.40.a.a 1.a 1.a $3$ $9.634$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None \(548856\) \(1109442852\) \(17\!\cdots\!90\) \(-17\!\cdots\!44\) $+$ $\mathrm{SU}(2)$ \(q+(182952-\beta _{1})q^{2}+(369814284+\cdots)q^{3}+\cdots\)
1.42.a.a 1.a 1.a $3$ $10.647$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None \(-344688\) \(-10820953044\) \(-21\!\cdots\!50\) \(57\!\cdots\!92\) $+$ $\mathrm{SU}(2)$ \(q+(-114896+\beta _{1})q^{2}+(-3606984348+\cdots)q^{3}+\cdots\)
1.44.a.a 1.a 1.a $3$ $11.711$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None \(-2209944\) \(24401437812\) \(53\!\cdots\!70\) \(30\!\cdots\!56\) $+$ $\mathrm{SU}(2)$ \(q+(-736648-\beta _{1})q^{2}+(8133812604+\cdots)q^{3}+\cdots\)
1.46.a.a 1.a 1.a $3$ $12.826$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None \(3814272\) \(5359866876\) \(-91\!\cdots\!50\) \(-76\!\cdots\!08\) $+$ $\mathrm{SU}(2)$ \(q+(1271424+\beta _{1})q^{2}+(1786622292+\cdots)q^{3}+\cdots\)
2.34.a.a 2.a 1.a $1$ $13.797$ \(\Q\) None \(-65536\) \(-133005564\) \(538799132550\) \(-33\!\cdots\!68\) $+$ $\mathrm{SU}(2)$ \(q-2^{16}q^{2}-133005564q^{3}+2^{32}q^{4}+\cdots\)
2.34.a.b 2.a 1.a $2$ $13.797$ \(\mathbb{Q}[x]/(x^{2} - \cdots)\) None \(131072\) \(8356488\) \(-5332476660\) \(13\!\cdots\!56\) $-$ $\mathrm{SU}(2)$ \(q+2^{16}q^{2}+(4178244-\beta )q^{3}+2^{32}q^{4}+\cdots\)
1.48.a.a 1.a 1.a $4$ $13.991$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None \(5785560\) \(38461494960\) \(-31\!\cdots\!00\) \(-39\!\cdots\!00\) $+$ $\mathrm{SU}(2)$ \(q+(1446390+\beta _{1})q^{2}+(9615373740+\cdots)q^{3}+\cdots\)
1.50.a.a 1.a 1.a $3$ $15.207$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None \(-24225168\) \(-326954692404\) \(63\!\cdots\!50\) \(50\!\cdots\!92\) $+$ $\mathrm{SU}(2)$ \(q+(-8075056+\beta _{1})q^{2}+(-108984897468+\cdots)q^{3}+\cdots\)
2.36.a.a 2.a 1.a $1$ $15.519$ \(\Q\) None \(-131072\) \(36494748\) \(389070858750\) \(-12\!\cdots\!56\) $+$ $\mathrm{SU}(2)$ \(q-2^{17}q^{2}+36494748q^{3}+2^{34}q^{4}+\cdots\)
2.36.a.b 2.a 1.a $1$ $15.519$ \(\Q\) None \(131072\) \(159933852\) \(-28\!\cdots\!90\) \(-78\!\cdots\!44\) $-$ $\mathrm{SU}(2)$ \(q+2^{17}q^{2}+159933852q^{3}+2^{34}q^{4}+\cdots\)
1.52.a.a 1.a 1.a $4$ $16.473$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None \(32756040\) \(403863773040\) \(12\!\cdots\!80\) \(65\!\cdots\!00\) $+$ $\mathrm{SU}(2)$ \(q+(8189010+\beta _{1})q^{2}+(100965943260+\cdots)q^{3}+\cdots\)
2.38.a.a 2.a 1.a $2$ $17.343$ \(\mathbb{Q}[x]/(x^{2} - \cdots)\) None \(-524288\) \(423071208\) \(-13\!\cdots\!40\) \(31\!\cdots\!56\) $+$ $\mathrm{SU}(2)$ \(q-2^{18}q^{2}+(211535604-\beta )q^{3}+2^{36}q^{4}+\cdots\)
2.38.a.b 2.a 1.a $2$ $17.343$ \(\mathbb{Q}[x]/(x^{2} - \cdots)\) None \(524288\) \(-501686808\) \(41\!\cdots\!00\) \(-35\!\cdots\!56\) $-$ $\mathrm{SU}(2)$ \(q+2^{18}q^{2}+(-250843404-\beta )q^{3}+\cdots\)
1.54.a.a 1.a 1.a $4$ $17.790$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None \(-68476320\) \(-10\!\cdots\!80\) \(-45\!\cdots\!00\) \(-22\!\cdots\!00\) $+$ $\mathrm{SU}(2)$ \(q+(-17119080+\beta _{1})q^{2}+(-262102751820+\cdots)q^{3}+\cdots\)
1.56.a.a 1.a 1.a $4$ $19.158$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None \(208622520\) \(-68\!\cdots\!80\) \(14\!\cdots\!60\) \(-20\!\cdots\!00\) $+$ $\mathrm{SU}(2)$ \(q+(52155630+\beta _{1})q^{2}+(-1705367672820+\cdots)q^{3}+\cdots\)
2.40.a.a 2.a 1.a $1$ $19.268$ \(\Q\) None \(524288\) \(-735458292\) \(-16\!\cdots\!50\) \(16\!\cdots\!64\) $-$ $\mathrm{SU}(2)$ \(q+2^{19}q^{2}-735458292q^{3}+2^{38}q^{4}+\cdots\)
2.40.a.b 2.a 1.a $2$ $19.268$ \(\mathbb{Q}[x]/(x^{2} - \cdots)\) None \(-1048576\) \(287418264\) \(53\!\cdots\!20\) \(74\!\cdots\!12\) $+$ $\mathrm{SU}(2)$ \(q-2^{19}q^{2}+(143709132-\beta )q^{3}+2^{38}q^{4}+\cdots\)
3.33.b.a 3.b 3.b $10$ $19.460$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None \(0\) \(-21387150\) \(0\) \(-55\!\cdots\!40\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(-2138715+35\beta _{1}-\beta _{2}+\cdots)q^{3}+\cdots\)
1.58.a.a 1.a 1.a $4$ $20.577$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None \(-217744560\) \(37\!\cdots\!60\) \(-10\!\cdots\!00\) \(95\!\cdots\!00\) $+$ $\mathrm{SU}(2)$ \(q+(-54436140+\beta _{1})q^{2}+(9368965543140+\cdots)q^{3}+\cdots\)
3.34.a.a 3.a 1.a $3$ $20.695$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None \(41202\) \(129140163\) \(51261823890\) \(76\!\cdots\!56\) $-$ $\mathrm{SU}(2)$ \(q+(13734-\beta _{1})q^{2}+3^{16}q^{3}+(-369155924+\cdots)q^{4}+\cdots\)
3.34.a.b 3.a 1.a $3$ $20.695$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None \(136620\) \(-129140163\) \(-260488036134\) \(10\!\cdots\!32\) $+$ $\mathrm{SU}(2)$ \(q+(45540-\beta _{1})q^{2}-3^{16}q^{3}+(4863185200+\cdots)q^{4}+\cdots\)
2.42.a.a 2.a 1.a $1$ $21.294$ \(\Q\) None \(-1048576\) \(5043516516\) \(-48\!\cdots\!50\) \(-11\!\cdots\!68\) $+$ $\mathrm{SU}(2)$ \(q-2^{20}q^{2}+5043516516q^{3}+2^{40}q^{4}+\cdots\)
2.42.a.b 2.a 1.a $2$ $21.294$ \(\mathbb{Q}[x]/(x^{2} - \cdots)\) None \(2097152\) \(8863347528\) \(97\!\cdots\!80\) \(21\!\cdots\!56\) $-$ $\mathrm{SU}(2)$ \(q+2^{20}q^{2}+(4431673764-\beta )q^{3}+\cdots\)
3.35.b.a 3.b 3.b $10$ $21.968$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None \(0\) \(119369106\) \(0\) \(-12\!\cdots\!72\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(11936911+41\beta _{1}-\beta _{2}+\cdots)q^{3}+\cdots\)
1.60.a.a 1.a 1.a $5$ $22.046$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None \(-449691864\) \(84\!\cdots\!32\) \(17\!\cdots\!90\) \(14\!\cdots\!56\) $+$ $\mathrm{SU}(2)$ \(q+(-89938373-\beta _{1})q^{2}+(16803326335969+\cdots)q^{3}+\cdots\)
3.36.a.a 3.a 1.a $2$ $23.279$ \(\Q(\sqrt{2196841}) \) None \(-60912\) \(258280326\) \(-13\!\cdots\!40\) \(-12\!\cdots\!44\) $-$ $\mathrm{SU}(2)$ \(q+(-30456-\beta )q^{2}+3^{17}q^{3}+(28571469952+\cdots)q^{4}+\cdots\)
3.36.a.b 3.a 1.a $3$ $23.279$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None \(-87330\) \(-387420489\) \(27\!\cdots\!10\) \(48\!\cdots\!64\) $+$ $\mathrm{SU}(2)$ \(q+(-29110+\beta _{1})q^{2}-3^{17}q^{3}+(10829584300+\cdots)q^{4}+\cdots\)
2.44.a.a 2.a 1.a $2$ $23.422$ \(\mathbb{Q}[x]/(x^{2} - \cdots)\) None \(-4194304\) \(-12981630984\) \(-39\!\cdots\!00\) \(11\!\cdots\!08\) $+$ $\mathrm{SU}(2)$ \(q-2^{21}q^{2}+(-6490815492-\beta )q^{3}+\cdots\)
2.44.a.b 2.a 1.a $2$ $23.422$ \(\mathbb{Q}[x]/(x^{2} - \cdots)\) None \(4194304\) \(-22341634056\) \(-47\!\cdots\!20\) \(-22\!\cdots\!28\) $-$ $\mathrm{SU}(2)$ \(q+2^{21}q^{2}+(-11170817028-\beta )q^{3}+\cdots\)
1.62.a.a 1.a 1.a $4$ $23.566$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None \(1146312000\) \(-57\!\cdots\!00\) \(-52\!\cdots\!00\) \(-63\!\cdots\!00\) $+$ $\mathrm{SU}(2)$ \(q+(286578000-\beta _{1})q^{2}+(-143430899755500+\cdots)q^{3}+\cdots\)
3.37.b.a 3.b 3.b $1$ $24.627$ \(\Q\) \(\Q(\sqrt{-3}) \) \(0\) \(387420489\) \(0\) \(27\!\cdots\!98\) $\mathrm{U}(1)[D_{2}]$ \(q+3^{18}q^{3}+2^{36}q^{4}+2757049053441698q^{7}+\cdots\)
3.37.b.b 3.b 3.b $10$ $24.627$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None \(0\) \(-552156750\) \(0\) \(-12\!\cdots\!00\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(-55215675-69\beta _{1}-\beta _{2}+\cdots)q^{3}+\cdots\)
1.64.a.a 1.a 1.a $5$ $25.136$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None \(507315096\) \(95\!\cdots\!52\) \(-50\!\cdots\!30\) \(37\!\cdots\!56\) $+$ $\mathrm{SU}(2)$ \(q+(101463019-\beta _{1})q^{2}+(190649070219572+\cdots)q^{3}+\cdots\)
2.46.a.a 2.a 1.a $2$ $25.651$ \(\mathbb{Q}[x]/(x^{2} - \cdots)\) None \(-8388608\) \(-69766206552\) \(-45\!\cdots\!00\) \(-95\!\cdots\!44\) $+$ $\mathrm{SU}(2)$ \(q-2^{22}q^{2}+(-34883103276-\beta )q^{3}+\cdots\)
2.46.a.b 2.a 1.a $2$ $25.651$ \(\mathbb{Q}[x]/(x^{2} - \cdots)\) None \(8388608\) \(59861217192\) \(43\!\cdots\!00\) \(79\!\cdots\!24\) $-$ $\mathrm{SU}(2)$ \(q+2^{22}q^{2}+(29930608596-\beta )q^{3}+\cdots\)
4.33.b.a 4.b 4.b $1$ $25.947$ \(\Q\) \(\Q(\sqrt{-1}) \) \(65536\) \(0\) \(-196496109694\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+2^{16}q^{2}+2^{32}q^{4}-196496109694q^{5}+\cdots\)
4.33.b.b 4.b 4.b $14$ $25.947$ \(\mathbb{Q}[x]/(x^{14} + \cdots)\) None \(-23780\) \(0\) \(138121491740\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-1699+\beta _{1})q^{2}+(9-21\beta _{1}+\beta _{2}+\cdots)q^{3}+\cdots\)
3.38.a.a 3.a 1.a $3$ $26.014$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None \(-310908\) \(-1162261467\) \(-96\!\cdots\!90\) \(-46\!\cdots\!44\) $+$ $\mathrm{SU}(2)$ \(q+(-103636-\beta _{1})q^{2}-3^{18}q^{3}+(112825533616+\cdots)q^{4}+\cdots\)
3.38.a.b 3.a 1.a $4$ $26.014$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None \(437562\) \(1549681956\) \(-40\!\cdots\!04\) \(66\!\cdots\!84\) $-$ $\mathrm{SU}(2)$ \(q+(109391-\beta _{1})q^{2}+3^{18}q^{3}+(86524834843+\cdots)q^{4}+\cdots\)
3.39.b.a 3.b 3.b $12$ $27.439$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None \(0\) \(-114742404\) \(0\) \(81\!\cdots\!48\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(-9561867+97\beta _{1}+\beta _{2}+\cdots)q^{3}+\cdots\)
4.34.a.a 4.a 1.a $3$ $27.593$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None \(0\) \(92491788\) \(-53880683886\) \(45\!\cdots\!92\) $-$ $\mathrm{SU}(2)$ \(q+(30830596+\beta _{1})q^{3}+(-17960227962+\cdots)q^{5}+\cdots\)
2.48.a.a 2.a 1.a $1$ $27.982$ \(\Q\) None \(8388608\) \(-196634580372\) \(20\!\cdots\!50\) \(-51\!\cdots\!96\) $-$ $\mathrm{SU}(2)$ \(q+2^{23}q^{2}-196634580372q^{3}+2^{46}q^{4}+\cdots\)
2.48.a.b 2.a 1.a $2$ $27.982$ \(\mathbb{Q}[x]/(x^{2} - \cdots)\) None \(-16777216\) \(122289844824\) \(18\!\cdots\!40\) \(16\!\cdots\!32\) $+$ $\mathrm{SU}(2)$ \(q-2^{23}q^{2}+(61144922412-5\beta )q^{3}+\cdots\)
3.40.a.a 3.a 1.a $3$ $28.902$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None \(-1107000\) \(3486784401\) \(93\!\cdots\!90\) \(13\!\cdots\!04\) $-$ $\mathrm{SU}(2)$ \(q+(-369000-\beta _{1})q^{2}+3^{19}q^{3}+(335300075200+\cdots)q^{4}+\cdots\)
3.40.a.b 3.a 1.a $3$ $28.902$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None \(533574\) \(-3486784401\) \(-53\!\cdots\!30\) \(-15\!\cdots\!28\) $+$ $\mathrm{SU}(2)$ \(q+(177858-\beta _{1})q^{2}-3^{19}q^{3}+(319147551244+\cdots)q^{4}+\cdots\)
4.35.b.a 4.b 4.b $16$ $29.290$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None \(-27372\) \(0\) \(-21372255840\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-1711+\beta _{1})q^{2}+(19-76\beta _{1}-\beta _{2}+\cdots)q^{3}+\cdots\)
3.41.b.a 3.b 3.b $12$ $30.403$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None \(0\) \(-372082572\) \(0\) \(-94\!\cdots\!84\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(-31006881-471\beta _{1}+\cdots)q^{3}+\cdots\)
Next   Download to