| 5.4.a |
\(0.295009550029\) |
\( \chi_{ 5 }(1, \cdot) \) |
\(1\) |
\(1\) |
\(1\) |
\(1\)+\(0\) |
| 6.4.a |
\(0.354011460034\) |
\( \chi_{ 6 }(1, \cdot) \) |
\(1\) |
\(1\) |
\(1\) |
\(1\)+\(0\)+\(0\)+\(0\) |
| 7.4.a |
\(0.41301337004\) |
\( \chi_{ 7 }(1, \cdot) \) |
\(1\) |
\(1\) |
\(1\) |
\(1\)+\(0\) |
| 7.4.c |
\(0.41301337004\) |
\( \chi_{ 7 }(2, \cdot) \) |
\(3\) |
\(2\) |
\(2\) |
|
| 8.4.a |
\(0.472015280046\) |
\( \chi_{ 8 }(1, \cdot) \) |
\(1\) |
\(1\) |
\(1\) |
\(1\)+\(0\) |
| 8.4.b |
\(0.472015280046\) |
\( \chi_{ 8 }(5, \cdot) \) |
\(2\) |
\(2\) |
\(2\) |
|
| 9.4.a |
\(0.531017190052\) |
\( \chi_{ 9 }(1, \cdot) \) |
\(1\) |
\(1\) |
\(1\) |
\(1\)+\(0\) |
| 9.4.c |
\(0.531017190052\) |
\( \chi_{ 9 }(4, \cdot) \) |
\(3\) |
\(4\) |
\(4\) |
|
| 10.4.a |
\(0.590019100057\) |
\( \chi_{ 10 }(1, \cdot) \) |
\(1\) |
\(1\) |
\(1\) |
\(0\)+\(0\)+\(0\)+\(1\) |
| 10.4.b |
\(0.590019100057\) |
\( \chi_{ 10 }(9, \cdot) \) |
\(2\) |
\(2\) |
\(2\) |
|
| 11.4.a |
\(0.649021010063\) |
\( \chi_{ 11 }(1, \cdot) \) |
\(1\) |
\(2\) |
\(2\) |
\(2\)+\(0\) |
| 11.4.c |
\(0.649021010063\) |
\( \chi_{ 11 }(3, \cdot) \) |
\(5\) |
\(8\) |
\(8\) |
|
| 12.4.a |
\(0.708022920069\) |
\( \chi_{ 12 }(1, \cdot) \) |
\(1\) |
\(1\) |
\(1\) |
\(0\)+\(0\)+\(0\)+\(1\) |
| 12.4.b |
\(0.708022920069\) |
\( \chi_{ 12 }(11, \cdot) \) |
\(2\) |
\(4\) |
\(4\) |
|
| 13.4.a |
\(0.767024830075\) |
\( \chi_{ 13 }(1, \cdot) \) |
\(1\) |
\(3\) |
\(1\)+\(2\) |
\(2\)+\(1\) |
| 13.4.b |
\(0.767024830075\) |
\( \chi_{ 13 }(12, \cdot) \) |
\(2\) |
\(2\) |
\(2\) |
|
| 13.4.c |
\(0.767024830075\) |
\( \chi_{ 13 }(3, \cdot) \) |
\(3\) |
\(6\) |
\(2\)+\(4\) |
|
| 13.4.e |
\(0.767024830075\) |
\( \chi_{ 13 }(4, \cdot) \) |
\(6\) |
\(4\) |
\(2\)+\(2\) |
|
| 14.4.a |
\(0.82602674008\) |
\( \chi_{ 14 }(1, \cdot) \) |
\(1\) |
\(2\) |
\(1\)+\(1\) |
\(1\)+\(0\)+\(0\)+\(1\) |
| 14.4.c |
\(0.82602674008\) |
\( \chi_{ 14 }(9, \cdot) \) |
\(3\) |
\(4\) |
\(2\)+\(2\) |
|
| 15.4.a |
\(0.885028650086\) |
\( \chi_{ 15 }(1, \cdot) \) |
\(1\) |
\(2\) |
\(1\)+\(1\) |
\(1\)+\(0\)+\(0\)+\(1\) |
| 15.4.b |
\(0.885028650086\) |
\( \chi_{ 15 }(4, \cdot) \) |
\(2\) |
\(4\) |
\(4\) |
|
| 15.4.e |
\(0.885028650086\) |
\( \chi_{ 15 }(2, \cdot) \) |
\(4\) |
\(8\) |
\(8\) |
|
| 16.4.a |
\(0.944030560092\) |
\( \chi_{ 16 }(1, \cdot) \) |
\(1\) |
\(1\) |
\(1\) |
\(1\)+\(0\) |
| 16.4.e |
\(0.944030560092\) |
\( \chi_{ 16 }(5, \cdot) \) |
\(4\) |
\(10\) |
\(10\) |
|
| 17.4.a |
\(1.0030324701\) |
\( \chi_{ 17 }(1, \cdot) \) |
\(1\) |
\(4\) |
\(1\)+\(3\) |
\(3\)+\(1\) |
| 17.4.b |
\(1.0030324701\) |
\( \chi_{ 17 }(16, \cdot) \) |
\(2\) |
\(4\) |
\(4\) |
|
| 17.4.c |
\(1.0030324701\) |
\( \chi_{ 17 }(4, \cdot) \) |
\(4\) |
\(8\) |
\(8\) |
|
| 17.4.d |
\(1.0030324701\) |
\( \chi_{ 17 }(2, \cdot) \) |
\(8\) |
\(12\) |
\(12\) |
|
| 18.4.a |
\(1.0620343801\) |
\( \chi_{ 18 }(1, \cdot) \) |
\(1\) |
\(1\) |
\(1\) |
\(0\)+\(0\)+\(0\)+\(1\) |
| 18.4.c |
\(1.0620343801\) |
\( \chi_{ 18 }(7, \cdot) \) |
\(3\) |
\(6\) |
\(2\)+\(4\) |
|
| 19.4.a |
\(1.12103629011\) |
\( \chi_{ 19 }(1, \cdot) \) |
\(1\) |
\(4\) |
\(1\)+\(3\) |
\(3\)+\(1\) |
| 19.4.c |
\(1.12103629011\) |
\( \chi_{ 19 }(7, \cdot) \) |
\(3\) |
\(8\) |
\(4\)+\(4\) |
|
| 19.4.e |
\(1.12103629011\) |
\( \chi_{ 19 }(4, \cdot) \) |
\(9\) |
\(24\) |
\(24\) |
|
| 20.4.a |
\(1.18003820011\) |
\( \chi_{ 20 }(1, \cdot) \) |
\(1\) |
\(1\) |
\(1\) |
\(0\)+\(0\)+\(0\)+\(1\) |
| 20.4.c |
\(1.18003820011\) |
\( \chi_{ 20 }(9, \cdot) \) |
\(2\) |
\(2\) |
\(2\) |
|
| 20.4.e |
\(1.18003820011\) |
\( \chi_{ 20 }(3, \cdot) \) |
\(4\) |
\(14\) |
\(2\)+\(12\) |
|
| 21.4.a |
\(1.23904011012\) |
\( \chi_{ 21 }(1, \cdot) \) |
\(1\) |
\(4\) |
\(1\)+\(1\)+\(2\) |
\(1\)+\(1\)+\(0\)+\(2\) |
| 21.4.c |
\(1.23904011012\) |
\( \chi_{ 21 }(20, \cdot) \) |
\(2\) |
\(6\) |
\(2\)+\(4\) |
|
| 21.4.e |
\(1.23904011012\) |
\( \chi_{ 21 }(4, \cdot) \) |
\(3\) |
\(8\) |
\(2\)+\(6\) |
|
| 21.4.g |
\(1.23904011012\) |
\( \chi_{ 21 }(5, \cdot) \) |
\(6\) |
\(12\) |
\(12\) |
|
| 22.4.a |
\(1.29804202013\) |
\( \chi_{ 22 }(1, \cdot) \) |
\(1\) |
\(3\) |
\(1\)+\(1\)+\(1\) |
\(1\)+\(1\)+\(0\)+\(1\) |
| 22.4.c |
\(1.29804202013\) |
\( \chi_{ 22 }(3, \cdot) \) |
\(5\) |
\(12\) |
\(4\)+\(8\) |
|
| 23.4.a |
\(1.35704393013\) |
\( \chi_{ 23 }(1, \cdot) \) |
\(1\) |
\(5\) |
\(1\)+\(4\) |
\(4\)+\(1\) |
| 23.4.c |
\(1.35704393013\) |
\( \chi_{ 23 }(2, \cdot) \) |
\(11\) |
\(50\) |
\(50\) |
|
| 24.4.a |
\(1.41604584014\) |
\( \chi_{ 24 }(1, \cdot) \) |
\(1\) |
\(1\) |
\(1\) |
\(0\)+\(0\)+\(0\)+\(1\) |
| 24.4.d |
\(1.41604584014\) |
\( \chi_{ 24 }(13, \cdot) \) |
\(2\) |
\(6\) |
\(6\) |
|
| 24.4.f |
\(1.41604584014\) |
\( \chi_{ 24 }(11, \cdot) \) |
\(2\) |
\(10\) |
\(2\)+\(8\) |
|
| 25.4.a |
\(1.47504775014\) |
\( \chi_{ 25 }(1, \cdot) \) |
\(1\) |
\(3\) |
\(1\)+\(1\)+\(1\) |
\(2\)+\(1\) |
| 25.4.b |
\(1.47504775014\) |
\( \chi_{ 25 }(24, \cdot) \) |
\(2\) |
\(4\) |
\(2\)+\(2\) |
|