23.1.b |
\(0.011478495290559056\) |
\( \chi_{ 23 }(22, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
31.1.b |
\(0.015471015391623074\) |
\( \chi_{ 31 }(30, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
39.1.d |
\(0.019463535492687093\) |
\( \chi_{ 39 }(38, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
44.1.d |
\(0.021958860555852104\) |
\( \chi_{ 44 }(21, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
47.1.b |
\(0.023456055593751114\) |
\( \chi_{ 47 }(46, \cdot) \) |
\(2\) |
\(2\) |
\(2\) |
52.1.j |
\(0.025951380656916125\) |
\( \chi_{ 52 }(3, \cdot) \) |
\(6\) |
\(2\) |
\(2\) |
55.1.d |
\(0.027448575694815132\) |
\( \chi_{ 55 }(54, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
56.1.h |
\(0.027947640707448134\) |
\( \chi_{ 56 }(13, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
57.1.h |
\(0.028446705720081136\) |
\( \chi_{ 57 }(11, \cdot) \) |
\(6\) |
\(2\) |
\(2\) |
59.1.b |
\(0.02944483574534714\) |
\( \chi_{ 59 }(58, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
63.1.d |
\(0.03144109579587915\) |
\( \chi_{ 63 }(55, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
68.1.d |
\(0.033936420859044164\) |
\( \chi_{ 68 }(67, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
68.1.f |
\(0.033936420859044164\) |
\( \chi_{ 68 }(47, \cdot) \) |
\(4\) |
\(2\) |
\(2\) |
71.1.b |
\(0.03543361589694317\) |
\( \chi_{ 71 }(70, \cdot) \) |
\(2\) |
\(3\) |
\(3\) |
72.1.p |
\(0.03593268090957617\) |
\( \chi_{ 72 }(43, \cdot) \) |
\(6\) |
\(2\) |
\(2\) |
76.1.c |
\(0.03792894096010818\) |
\( \chi_{ 76 }(37, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
77.1.j |
\(0.03842800597274119\) |
\( \chi_{ 77 }(20, \cdot) \) |
\(10\) |
\(4\) |
\(4\) |
79.1.b |
\(0.03942613599800719\) |
\( \chi_{ 79 }(78, \cdot) \) |
\(2\) |
\(2\) |
\(2\) |
80.1.h |
\(0.03992520101064019\) |
\( \chi_{ 80 }(79, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
83.1.b |
\(0.0414223960485392\) |
\( \chi_{ 83 }(82, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
84.1.p |
\(0.0419214610611722\) |
\( \chi_{ 84 }(53, \cdot) \) |
\(6\) |
\(2\) |
\(2\) |
87.1.d |
\(0.04341865609907121\) |
\( \chi_{ 87 }(86, \cdot) \) |
\(2\) |
\(2\) |
\(1\)+\(1\) |
88.1.l |
\(0.04391772111170421\) |
\( \chi_{ 88 }(3, \cdot) \) |
\(10\) |
\(4\) |
\(4\) |
93.1.l |
\(0.04641304617486922\) |
\( \chi_{ 93 }(2, \cdot) \) |
\(10\) |
\(4\) |
\(4\) |
95.1.d |
\(0.04741117620013523\) |
\( \chi_{ 95 }(94, \cdot) \) |
\(2\) |
\(3\) |
\(1\)+\(2\) |
99.1.h |
\(0.049407436250667236\) |
\( \chi_{ 99 }(43, \cdot) \) |
\(6\) |
\(2\) |
\(2\) |
100.1.j |
\(0.04990650126330024\) |
\( \chi_{ 100 }(11, \cdot) \) |
\(10\) |
\(4\) |
\(4\) |
103.1.b |
\(0.051403696301199245\) |
\( \chi_{ 103 }(102, \cdot) \) |
\(2\) |
\(2\) |
\(2\) |
104.1.h |
\(0.05190276131383225\) |
\( \chi_{ 104 }(51, \cdot) \) |
\(2\) |
\(2\) |
\(1\)+\(1\) |
107.1.b |
\(0.053399956351731254\) |
\( \chi_{ 107 }(106, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
108.1.c |
\(0.05389902136436426\) |
\( \chi_{ 108 }(53, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
111.1.d |
\(0.05539621640226327\) |
\( \chi_{ 111 }(110, \cdot) \) |
\(2\) |
\(3\) |
\(1\)+\(2\) |
111.1.h |
\(0.05539621640226327\) |
\( \chi_{ 111 }(11, \cdot) \) |
\(6\) |
\(2\) |
\(2\) |
111.1.i |
\(0.05539621640226327\) |
\( \chi_{ 111 }(26, \cdot) \) |
\(6\) |
\(2\) |
\(2\) |
112.1.l |
\(0.05589528141489627\) |
\( \chi_{ 112 }(13, \cdot) \) |
\(4\) |
\(2\) |
\(2\) |
116.1.d |
\(0.05789154146542828\) |
\( \chi_{ 116 }(115, \cdot) \) |
\(2\) |
\(2\) |
\(1\)+\(1\) |
116.1.j |
\(0.05789154146542828\) |
\( \chi_{ 116 }(7, \cdot) \) |
\(14\) |
\(6\) |
\(6\) |
117.1.j |
\(0.05839060647806128\) |
\( \chi_{ 117 }(73, \cdot) \) |
\(4\) |
\(2\) |
\(2\) |
119.1.d |
\(0.05938873650332729\) |
\( \chi_{ 119 }(118, \cdot) \) |
\(2\) |
\(4\) |
\(2\)+\(2\) |
120.1.i |
\(0.059887801515960286\) |
\( \chi_{ 120 }(29, \cdot) \) |
\(2\) |
\(2\) |
\(2\) |
124.1.i |
\(0.061884061566492295\) |
\( \chi_{ 124 }(67, \cdot) \) |
\(6\) |
\(4\) |
\(4\) |
127.1.b |
\(0.06338125660439131\) |
\( \chi_{ 127 }(126, \cdot) \) |
\(2\) |
\(2\) |
\(2\) |
128.1.d |
\(0.06388032161702431\) |
\( \chi_{ 128 }(63, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
129.1.l |
\(0.06437938662965731\) |
\( \chi_{ 129 }(11, \cdot) \) |
\(14\) |
\(6\) |
\(6\) |
131.1.b |
\(0.06537751665492332\) |
\( \chi_{ 131 }(130, \cdot) \) |
\(2\) |
\(2\) |
\(2\) |
133.1.m |
\(0.06637564668018932\) |
\( \chi_{ 133 }(83, \cdot) \) |
\(6\) |
\(4\) |
\(4\) |
133.1.r |
\(0.06637564668018932\) |
\( \chi_{ 133 }(18, \cdot) \) |
\(6\) |
\(2\) |
\(2\) |
135.1.d |
\(0.06737377670545533\) |
\( \chi_{ 135 }(134, \cdot) \) |
\(2\) |
\(2\) |
\(1\)+\(1\) |
136.1.e |
\(0.06787284171808833\) |
\( \chi_{ 136 }(67, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
136.1.j |
\(0.06787284171808833\) |
\( \chi_{ 136 }(115, \cdot) \) |
\(4\) |
\(2\) |
\(2\) |