| 23.1.b |
\(0.0114784952906\) |
\( \chi_{ 23 }(22, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
| 31.1.b |
\(0.0154710153916\) |
\( \chi_{ 31 }(30, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
| 39.1.d |
\(0.0194635354927\) |
\( \chi_{ 39 }(38, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
| 44.1.d |
\(0.0219588605559\) |
\( \chi_{ 44 }(21, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
| 47.1.b |
\(0.0234560555938\) |
\( \chi_{ 47 }(46, \cdot) \) |
\(2\) |
\(2\) |
\(2\) |
| 52.1.j |
\(0.0259513806569\) |
\( \chi_{ 52 }(3, \cdot) \) |
\(6\) |
\(2\) |
\(2\) |
| 55.1.d |
\(0.0274485756948\) |
\( \chi_{ 55 }(54, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
| 56.1.h |
\(0.0279476407074\) |
\( \chi_{ 56 }(13, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
| 57.1.h |
\(0.0284467057201\) |
\( \chi_{ 57 }(11, \cdot) \) |
\(6\) |
\(2\) |
\(2\) |
| 59.1.b |
\(0.0294448357453\) |
\( \chi_{ 59 }(58, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
| 63.1.d |
\(0.0314410957959\) |
\( \chi_{ 63 }(55, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
| 68.1.d |
\(0.033936420859\) |
\( \chi_{ 68 }(67, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
| 68.1.f |
\(0.033936420859\) |
\( \chi_{ 68 }(47, \cdot) \) |
\(4\) |
\(2\) |
\(2\) |
| 71.1.b |
\(0.0354336158969\) |
\( \chi_{ 71 }(70, \cdot) \) |
\(2\) |
\(3\) |
\(3\) |
| 72.1.p |
\(0.0359326809096\) |
\( \chi_{ 72 }(43, \cdot) \) |
\(6\) |
\(2\) |
\(2\) |
| 76.1.c |
\(0.0379289409601\) |
\( \chi_{ 76 }(37, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
| 77.1.j |
\(0.0384280059727\) |
\( \chi_{ 77 }(20, \cdot) \) |
\(10\) |
\(4\) |
\(4\) |
| 79.1.b |
\(0.039426135998\) |
\( \chi_{ 79 }(78, \cdot) \) |
\(2\) |
\(2\) |
\(2\) |
| 80.1.h |
\(0.0399252010106\) |
\( \chi_{ 80 }(79, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
| 83.1.b |
\(0.0414223960485\) |
\( \chi_{ 83 }(82, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
| 84.1.p |
\(0.0419214610612\) |
\( \chi_{ 84 }(53, \cdot) \) |
\(6\) |
\(2\) |
\(2\) |
| 87.1.d |
\(0.0434186560991\) |
\( \chi_{ 87 }(86, \cdot) \) |
\(2\) |
\(2\) |
\(1\)+\(1\) |
| 88.1.l |
\(0.0439177211117\) |
\( \chi_{ 88 }(3, \cdot) \) |
\(10\) |
\(4\) |
\(4\) |
| 93.1.l |
\(0.0464130461749\) |
\( \chi_{ 93 }(2, \cdot) \) |
\(10\) |
\(4\) |
\(4\) |
| 95.1.d |
\(0.0474111762001\) |
\( \chi_{ 95 }(94, \cdot) \) |
\(2\) |
\(3\) |
\(1\)+\(2\) |
| 99.1.h |
\(0.0494074362507\) |
\( \chi_{ 99 }(43, \cdot) \) |
\(6\) |
\(2\) |
\(2\) |
| 100.1.j |
\(0.0499065012633\) |
\( \chi_{ 100 }(11, \cdot) \) |
\(10\) |
\(4\) |
\(4\) |
| 103.1.b |
\(0.0514036963012\) |
\( \chi_{ 103 }(102, \cdot) \) |
\(2\) |
\(2\) |
\(2\) |
| 104.1.h |
\(0.0519027613138\) |
\( \chi_{ 104 }(51, \cdot) \) |
\(2\) |
\(2\) |
\(1\)+\(1\) |
| 107.1.b |
\(0.0533999563517\) |
\( \chi_{ 107 }(106, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
| 108.1.c |
\(0.0538990213644\) |
\( \chi_{ 108 }(53, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
| 111.1.d |
\(0.0553962164023\) |
\( \chi_{ 111 }(110, \cdot) \) |
\(2\) |
\(3\) |
\(1\)+\(2\) |
| 111.1.h |
\(0.0553962164023\) |
\( \chi_{ 111 }(11, \cdot) \) |
\(6\) |
\(2\) |
\(2\) |
| 111.1.i |
\(0.0553962164023\) |
\( \chi_{ 111 }(26, \cdot) \) |
\(6\) |
\(2\) |
\(2\) |
| 112.1.l |
\(0.0558952814149\) |
\( \chi_{ 112 }(13, \cdot) \) |
\(4\) |
\(2\) |
\(2\) |
| 116.1.d |
\(0.0578915414654\) |
\( \chi_{ 116 }(115, \cdot) \) |
\(2\) |
\(2\) |
\(1\)+\(1\) |
| 116.1.j |
\(0.0578915414654\) |
\( \chi_{ 116 }(7, \cdot) \) |
\(14\) |
\(6\) |
\(6\) |
| 117.1.j |
\(0.0583906064781\) |
\( \chi_{ 117 }(73, \cdot) \) |
\(4\) |
\(2\) |
\(2\) |
| 119.1.d |
\(0.0593887365033\) |
\( \chi_{ 119 }(118, \cdot) \) |
\(2\) |
\(4\) |
\(2\)+\(2\) |
| 120.1.i |
\(0.059887801516\) |
\( \chi_{ 120 }(29, \cdot) \) |
\(2\) |
\(2\) |
\(2\) |
| 124.1.i |
\(0.0618840615665\) |
\( \chi_{ 124 }(67, \cdot) \) |
\(6\) |
\(4\) |
\(4\) |
| 127.1.b |
\(0.0633812566044\) |
\( \chi_{ 127 }(126, \cdot) \) |
\(2\) |
\(2\) |
\(2\) |
| 128.1.d |
\(0.063880321617\) |
\( \chi_{ 128 }(63, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
| 129.1.l |
\(0.0643793866297\) |
\( \chi_{ 129 }(11, \cdot) \) |
\(14\) |
\(6\) |
\(6\) |
| 131.1.b |
\(0.0653775166549\) |
\( \chi_{ 131 }(130, \cdot) \) |
\(2\) |
\(2\) |
\(2\) |
| 133.1.m |
\(0.0663756466802\) |
\( \chi_{ 133 }(83, \cdot) \) |
\(6\) |
\(4\) |
\(4\) |
| 133.1.r |
\(0.0663756466802\) |
\( \chi_{ 133 }(18, \cdot) \) |
\(6\) |
\(2\) |
\(2\) |
| 135.1.d |
\(0.0673737767055\) |
\( \chi_{ 135 }(134, \cdot) \) |
\(2\) |
\(2\) |
\(1\)+\(1\) |
| 136.1.e |
\(0.0678728417181\) |
\( \chi_{ 136 }(67, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
| 136.1.j |
\(0.0678728417181\) |
\( \chi_{ 136 }(115, \cdot) \) |
\(4\) |
\(2\) |
\(2\) |