Learn more

Note: Search results may be incomplete due to uncomputed quantities: num_forms (558562 objects)

Refine search


Results (1-50 of at least 1000)

Next   To download results, determine the number of results.
Label $A$ $\chi$ $\operatorname{ord}(\chi)$ Dim. Orbits Decomposition AL-decomposition.
8001.2.a $63.888$ \( \chi_{8001}(1, \cdot) \) $1$ $314$ $27$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(7\)+\(11\)+\(12\)+\(13\)+\(14\)+\(15\)+\(16\)+\(16\)+\(16\)+\(18\)+\(19\)+\(20\)+\(22\)+\(28\)+\(32\)+\(40\) $32$+$30$+$40$+$22$+$47$+$48$+$43$+$52$
8002.2.a $63.896$ \( \chi_{8002}(1, \cdot) \) $1$ $333$ $7$ \(1\)+\(1\)+\(1\)+\(69\)+\(77\)+\(89\)+\(95\) $89$+$77$+$95$+$72$
8003.2.a $63.904$ \( \chi_{8003}(1, \cdot) \) $1$ $651$ $4$ \(147\)+\(153\)+\(172\)+\(179\) $153$+$172$+$179$+$147$
8004.2.a $63.912$ \( \chi_{8004}(1, \cdot) \) $1$ $104$ $11$ \(1\)+\(1\)+\(1\)+\(8\)+\(9\)+\(9\)+\(12\)+\(13\)+\(16\)+\(16\)+\(18\) $0$+$0$+$0$+$0$+$0$+$0$+$0$+$0$+$14$+$10$+$12$+$16$+$10$+$18$+$16$+$8$
8005.2.a $63.920$ \( \chi_{8005}(1, \cdot) \) $1$ $533$ $8$ \(1\)+\(1\)+\(2\)+\(2\)+\(126\)+\(127\)+\(137\)+\(137\) $127$+$139$+$139$+$128$
8006.2.a $63.928$ \( \chi_{8006}(1, \cdot) \) $1$ $334$ $4$ \(69\)+\(75\)+\(92\)+\(98\) $75$+$92$+$98$+$69$
8007.2.a $63.936$ \( \chi_{8007}(1, \cdot) \) $1$ $415$ $10$ \(1\)+\(2\)+\(39\)+\(40\)+\(46\)+\(48\)+\(56\)+\(56\)+\(63\)+\(64\) $48$+$56$+$64$+$40$+$56$+$48$+$40$+$63$
8008.2.a $63.944$ \( \chi_{8008}(1, \cdot) \) $1$ $180$ $26$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(2\)+\(3\)+\(5\)+\(6\)+\(8\)+\(9\)+\(\cdots\)+\(9\)+\(10\)+\(10\)+\(10\)+\(11\)+\(11\)+\(12\)+\(14\)+\(15\) $10$+$15$+$11$+$9$+$14$+$9$+$10$+$12$+$10$+$13$+$11$+$11$+$14$+$11$+$10$+$10$
8009.2.a $63.952$ \( \chi_{8009}(1, \cdot) \) $1$ $667$ $2$ \(306\)+\(361\) $306$+$361$
8010.2.a $63.960$ \( \chi_{8010}(1, \cdot) \) $1$ $144$ $44$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(\cdots\)+\(3\)+\(4\)+\(4\)+\(5\)+\(\cdots\)+\(5\)+\(6\)+\(6\)+\(6\)+\(7\)+\(8\)+\(8\)+\(10\)+\(10\) $10$+$4$+$8$+$6$+$11$+$11$+$9$+$13$+$6$+$8$+$4$+$10$+$10$+$12$+$14$+$8$
8011.2.a $63.968$ \( \chi_{8011}(1, \cdot) \) $1$ $667$ $2$ \(309\)+\(358\) $309$+$358$
8012.2.a $63.976$ \( \chi_{8012}(1, \cdot) \) $1$ $167$ $2$ \(79\)+\(88\) $0$+$0$+$88$+$79$
8013.2.a $63.984$ \( \chi_{8013}(1, \cdot) \) $1$ $445$ $4$ \(94\)+\(106\)+\(116\)+\(129\) $116$+$106$+$129$+$94$
8014.2.a $63.992$ \( \chi_{8014}(1, \cdot) \) $1$ $333$ $5$ \(2\)+\(76\)+\(76\)+\(88\)+\(91\) $76$+$91$+$90$+$76$
8015.2.a $64.000$ \( \chi_{8015}(1, \cdot) \) $1$ $455$ $15$ \(1\)+\(\cdots\)+\(1\)+\(3\)+\(38\)+\(44\)+\(45\)+\(49\)+\(62\)+\(67\)+\(68\)+\(73\) $52$+$63$+$68$+$45$+$67$+$44$+$41$+$75$
8016.2.a $64.008$ \( \chi_{8016}(1, \cdot) \) $1$ $166$ $33$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(3\)+\(3\)+\(3\)+\(4\)+\(5\)+\(\cdots\)+\(5\)+\(7\)+\(7\)+\(8\)+\(8\)+\(8\)+\(9\)+\(9\)+\(9\)+\(10\)+\(11\)+\(12\)+\(13\) $19$+$23$+$22$+$18$+$23$+$19$+$19$+$23$
8017.2.a $64.016$ \( \chi_{8017}(1, \cdot) \) $1$ $667$ $2$ \(327\)+\(340\) $327$+$340$
8018.2.a $64.024$ \( \chi_{8018}(1, \cdot) \) $1$ $315$ $11$ \(1\)+\(2\)+\(2\)+\(30\)+\(32\)+\(34\)+\(34\)+\(41\)+\(43\)+\(47\)+\(49\) $36$+$42$+$45$+$34$+$47$+$32$+$30$+$49$
8019.2.a $64.032$ \( \chi_{8019}(1, \cdot) \) $1$ $360$ $12$ \(3\)+\(3\)+\(21\)+\(\cdots\)+\(21\)+\(36\)+\(36\)+\(48\)+\(48\)+\(51\)+\(51\) $87$+$99$+$93$+$81$
8020.2.a $64.040$ \( \chi_{8020}(1, \cdot) \) $1$ $132$ $6$ \(1\)+\(2\)+\(28\)+\(29\)+\(35\)+\(37\) $0$+$0$+$0$+$0$+$37$+$29$+$29$+$37$
8021.2.a $64.048$ \( \chi_{8021}(1, \cdot) \) $1$ $617$ $4$ \(134\)+\(140\)+\(169\)+\(174\) $140$+$169$+$174$+$134$
8022.2.a $64.056$ \( \chi_{8022}(1, \cdot) \) $1$ $189$ $27$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(7\)+\(7\)+\(8\)+\(8\)+\(9\)+\(9\)+\(10\)+\(11\)+\(11\)+\(11\)+\(13\)+\(13\)+\(14\)+\(14\)+\(15\)+\(16\) $13$+$11$+$9$+$15$+$13$+$11$+$9$+$15$+$13$+$10$+$12$+$11$+$8$+$15$+$17$+$7$
8023.2.a $64.064$ \( \chi_{8023}(1, \cdot) \) $1$ $653$ $5$ \(3\)+\(155\)+\(158\)+\(165\)+\(172\) $161$+$172$+$165$+$155$
8024.2.a $64.072$ \( \chi_{8024}(1, \cdot) \) $1$ $232$ $29$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(2\)+\(3\)+\(3\)+\(3\)+\(18\)+\(20\)+\(22\)+\(23\)+\(24\)+\(30\)+\(32\)+\(33\) $28$+$31$+$30$+$27$+$34$+$25$+$24$+$33$
8025.2.a $64.080$ \( \chi_{8025}(1, \cdot) \) $1$ $336$ $44$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(3\)+\(3\)+\(3\)+\(4\)+\(5\)+\(5\)+\(5\)+\(6\)+\(7\)+\(10\)+\(11\)+\(11\)+\(12\)+\(13\)+\(13\)+\(16\)+\(16\)+\(17\)+\(17\)+\(18\)+\(18\)+\(22\)+\(22\)+\(29\)+\(29\) $38$+$43$+$49$+$39$+$41$+$36$+$40$+$50$
8026.2.a $64.088$ \( \chi_{8026}(1, \cdot) \) $1$ $334$ $4$ \(71\)+\(81\)+\(86\)+\(96\) $81$+$86$+$96$+$71$
8027.2.a $64.096$ \( \chi_{8027}(1, \cdot) \) $1$ $639$ $6$ \(1\)+\(1\)+\(143\)+\(149\)+\(169\)+\(176\) $149$+$170$+$177$+$143$
8028.2.a $64.104$ \( \chi_{8028}(1, \cdot) \) $1$ $92$ $16$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(5\)+\(7\)+\(8\)+\(8\)+\(11\)+\(11\)+\(16\)+\(16\) $0$+$0$+$0$+$0$+$18$+$18$+$28$+$28$
8028.2.h $64.104$ \( \chi_{8028}(4013, \cdot) \) $2$ $76$ $1$ \(76\)
8029.2.a $64.112$ \( \chi_{8029}(1, \cdot) \) $1$ $539$ $8$ \(64\)+\(64\)+\(66\)+\(66\)+\(69\)+\(69\)+\(70\)+\(71\) $66$+$71$+$69$+$64$+$69$+$64$+$66$+$70$
8030.2.a $64.120$ \( \chi_{8030}(1, \cdot) \) $1$ $241$ $38$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(3\)+\(3\)+\(4\)+\(5\)+\(6\)+\(6\)+\(6\)+\(7\)+\(7\)+\(8\)+\(11\)+\(14\)+\(15\)+\(15\)+\(15\)+\(17\)+\(17\)+\(18\)+\(18\)+\(19\) $12$+$18$+$20$+$11$+$15$+$14$+$13$+$17$+$16$+$15$+$13$+$17$+$12$+$18$+$19$+$11$
8031.2.a $64.128$ \( \chi_{8031}(1, \cdot) \) $1$ $447$ $4$ \(92\)+\(102\)+\(121\)+\(132\) $102$+$121$+$132$+$92$
8032.2.a $64.136$ \( \chi_{8032}(1, \cdot) \) $1$ $250$ $12$ \(1\)+\(\cdots\)+\(1\)+\(28\)+\(28\)+\(30\)+\(\cdots\)+\(30\)+\(35\)+\(35\) $59$+$66$+$66$+$59$
8033.2.a $64.144$ \( \chi_{8033}(1, \cdot) \) $1$ $645$ $5$ \(1\)+\(153\)+\(154\)+\(168\)+\(169\) $153$+$169$+$169$+$154$
8034.2.a $64.152$ \( \chi_{8034}(1, \cdot) \) $1$ $205$ $30$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(4\)+\(7\)+\(8\)+\(8\)+\(9\)+\(10\)+\(11\)+\(11\)+\(11\)+\(12\)+\(13\)+\(13\)+\(14\)+\(14\)+\(14\)+\(15\)+\(16\) $12$+$14$+$15$+$10$+$12$+$14$+$12$+$13$+$15$+$11$+$9$+$16$+$9$+$17$+$18$+$8$
8035.2.a $64.160$ \( \chi_{8035}(1, \cdot) \) $1$ $535$ $5$ \(1\)+\(114\)+\(127\)+\(140\)+\(153\) $140$+$127$+$154$+$114$
8036.2.a $64.168$ \( \chi_{8036}(1, \cdot) \) $1$ $136$ $20$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(3\)+\(4\)+\(5\)+\(5\)+\(5\)+\(8\)+\(8\)+\(10\)+\(10\)+\(15\)+\(15\)+\(20\)+\(20\) $0$+$0$+$0$+$0$+$37$+$29$+$29$+$41$
8037.2.a $64.176$ \( \chi_{8037}(1, \cdot) \) $1$ $344$ $24$ \(1\)+\(\cdots\)+\(1\)+\(3\)+\(3\)+\(4\)+\(4\)+\(6\)+\(7\)+\(7\)+\(7\)+\(12\)+\(16\)+\(18\)+\(23\)+\(23\)+\(23\)+\(24\)+\(24\)+\(34\)+\(\cdots\)+\(34\) $34$+$34$+$34$+$34$+$53$+$51$+$46$+$58$
8038.2.a $64.184$ \( \chi_{8038}(1, \cdot) \) $1$ $334$ $4$ \(75\)+\(83\)+\(84\)+\(92\) $84$+$83$+$92$+$75$
8039.2.a $64.192$ \( \chi_{8039}(1, \cdot) \) $1$ $670$ $2$ \(279\)+\(391\) $279$+$391$
8040.2.a $64.200$ \( \chi_{8040}(1, \cdot) \) $1$ $132$ $29$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(5\)+\(5\)+\(5\)+\(6\)+\(6\)+\(6\)+\(7\)+\(8\)+\(\cdots\)+\(8\)+\(9\)+\(\cdots\)+\(9\)+\(10\) $9$+$7$+$11$+$6$+$10$+$6$+$6$+$11$+$8$+$9$+$8$+$8$+$9$+$8$+$11$+$5$
8041.2.a $64.208$ \( \chi_{8041}(1, \cdot) \) $1$ $559$ $10$ \(1\)+\(1\)+\(60\)+\(62\)+\(66\)+\(66\)+\(69\)+\(74\)+\(78\)+\(82\) $74$+$66$+$67$+$69$+$78$+$62$+$61$+$82$
8042.2.a $64.216$ \( \chi_{8042}(1, \cdot) \) $1$ $336$ $4$ \(67\)+\(82\)+\(86\)+\(101\) $82$+$86$+$101$+$67$
8043.2.a $64.224$ \( \chi_{8043}(1, \cdot) \) $1$ $383$ $21$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(3\)+\(40\)+\(41\)+\(41\)+\(44\)+\(46\)+\(50\)+\(52\)+\(53\) $46$+$50$+$54$+$42$+$49$+$45$+$43$+$54$
8044.2.a $64.232$ \( \chi_{8044}(1, \cdot) \) $1$ $167$ $2$ \(80\)+\(87\) $0$+$0$+$87$+$80$
8045.2.a $64.240$ \( \chi_{8045}(1, \cdot) \) $1$ $537$ $5$ \(1\)+\(126\)+\(127\)+\(141\)+\(142\) $126$+$142$+$142$+$127$
8046.2.a $64.248$ \( \chi_{8046}(1, \cdot) \) $1$ $196$ $20$ \(1\)+\(1\)+\(2\)+\(2\)+\(8\)+\(8\)+\(9\)+\(9\)+\(12\)+\(\cdots\)+\(12\)+\(14\)+\(14\)+\(16\)+\(16\) $21$+$28$+$28$+$21$+$28$+$21$+$21$+$28$
8047.2.a $64.256$ \( \chi_{8047}(1, \cdot) \) $1$ $619$ $5$ \(2\)+\(142\)+\(151\)+\(156\)+\(168\) $151$+$158$+$168$+$142$
8048.2.a $64.264$ \( \chi_{8048}(1, \cdot) \) $1$ $251$ $25$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(3\)+\(5\)+\(5\)+\(10\)+\(12\)+\(12\)+\(21\)+\(21\)+\(26\)+\(28\)+\(29\)+\(33\)+\(33\) $63$+$63$+$73$+$52$
8049.2.a $64.272$ \( \chi_{8049}(1, \cdot) \) $1$ $447$ $4$ \(95\)+\(104\)+\(119\)+\(129\) $104$+$119$+$129$+$95$
Next   To download results, determine the number of results.