Label |
$A$ |
$\chi$ |
$\operatorname{ord}(\chi)$ |
Dim. |
Orbits |
Decomposition |
AL-decomposition. |
8001.2.a |
$63.888$ |
\( \chi_{8001}(1, \cdot) \) |
$1$ |
$314$ |
$27$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(7\)+\(11\)+\(12\)+\(13\)+\(14\)+\(15\)+\(16\)+\(16\)+\(16\)+\(18\)+\(19\)+\(20\)+\(22\)+\(28\)+\(32\)+\(40\) |
$32$+$30$+$40$+$22$+$47$+$48$+$43$+$52$ |
8002.2.a |
$63.896$ |
\( \chi_{8002}(1, \cdot) \) |
$1$ |
$333$ |
$7$ |
\(1\)+\(1\)+\(1\)+\(69\)+\(77\)+\(89\)+\(95\) |
$89$+$77$+$95$+$72$ |
8003.2.a |
$63.904$ |
\( \chi_{8003}(1, \cdot) \) |
$1$ |
$651$ |
$4$ |
\(147\)+\(153\)+\(172\)+\(179\) |
$153$+$172$+$179$+$147$ |
8004.2.a |
$63.912$ |
\( \chi_{8004}(1, \cdot) \) |
$1$ |
$104$ |
$11$ |
\(1\)+\(1\)+\(1\)+\(8\)+\(9\)+\(9\)+\(12\)+\(13\)+\(16\)+\(16\)+\(18\) |
$0$+$0$+$0$+$0$+$0$+$0$+$0$+$0$+$14$+$10$+$12$+$16$+$10$+$18$+$16$+$8$ |
8005.2.a |
$63.920$ |
\( \chi_{8005}(1, \cdot) \) |
$1$ |
$533$ |
$8$ |
\(1\)+\(1\)+\(2\)+\(2\)+\(126\)+\(127\)+\(137\)+\(137\) |
$127$+$139$+$139$+$128$ |
8006.2.a |
$63.928$ |
\( \chi_{8006}(1, \cdot) \) |
$1$ |
$334$ |
$4$ |
\(69\)+\(75\)+\(92\)+\(98\) |
$75$+$92$+$98$+$69$ |
8007.2.a |
$63.936$ |
\( \chi_{8007}(1, \cdot) \) |
$1$ |
$415$ |
$10$ |
\(1\)+\(2\)+\(39\)+\(40\)+\(46\)+\(48\)+\(56\)+\(56\)+\(63\)+\(64\) |
$48$+$56$+$64$+$40$+$56$+$48$+$40$+$63$ |
8008.2.a |
$63.944$ |
\( \chi_{8008}(1, \cdot) \) |
$1$ |
$180$ |
$26$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(2\)+\(3\)+\(5\)+\(6\)+\(8\)+\(9\)+\(\cdots\)+\(9\)+\(10\)+\(10\)+\(10\)+\(11\)+\(11\)+\(12\)+\(14\)+\(15\) |
$10$+$15$+$11$+$9$+$14$+$9$+$10$+$12$+$10$+$13$+$11$+$11$+$14$+$11$+$10$+$10$ |
8009.2.a |
$63.952$ |
\( \chi_{8009}(1, \cdot) \) |
$1$ |
$667$ |
$2$ |
\(306\)+\(361\) |
$306$+$361$ |
8010.2.a |
$63.960$ |
\( \chi_{8010}(1, \cdot) \) |
$1$ |
$144$ |
$44$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(\cdots\)+\(3\)+\(4\)+\(4\)+\(5\)+\(\cdots\)+\(5\)+\(6\)+\(6\)+\(6\)+\(7\)+\(8\)+\(8\)+\(10\)+\(10\) |
$10$+$4$+$8$+$6$+$11$+$11$+$9$+$13$+$6$+$8$+$4$+$10$+$10$+$12$+$14$+$8$ |
8011.2.a |
$63.968$ |
\( \chi_{8011}(1, \cdot) \) |
$1$ |
$667$ |
$2$ |
\(309\)+\(358\) |
$309$+$358$ |
8012.2.a |
$63.976$ |
\( \chi_{8012}(1, \cdot) \) |
$1$ |
$167$ |
$2$ |
\(79\)+\(88\) |
$0$+$0$+$88$+$79$ |
8013.2.a |
$63.984$ |
\( \chi_{8013}(1, \cdot) \) |
$1$ |
$445$ |
$4$ |
\(94\)+\(106\)+\(116\)+\(129\) |
$116$+$106$+$129$+$94$ |
8014.2.a |
$63.992$ |
\( \chi_{8014}(1, \cdot) \) |
$1$ |
$333$ |
$5$ |
\(2\)+\(76\)+\(76\)+\(88\)+\(91\) |
$76$+$91$+$90$+$76$ |
8015.2.a |
$64.000$ |
\( \chi_{8015}(1, \cdot) \) |
$1$ |
$455$ |
$15$ |
\(1\)+\(\cdots\)+\(1\)+\(3\)+\(38\)+\(44\)+\(45\)+\(49\)+\(62\)+\(67\)+\(68\)+\(73\) |
$52$+$63$+$68$+$45$+$67$+$44$+$41$+$75$ |
8016.2.a |
$64.008$ |
\( \chi_{8016}(1, \cdot) \) |
$1$ |
$166$ |
$33$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(3\)+\(3\)+\(3\)+\(4\)+\(5\)+\(\cdots\)+\(5\)+\(7\)+\(7\)+\(8\)+\(8\)+\(8\)+\(9\)+\(9\)+\(9\)+\(10\)+\(11\)+\(12\)+\(13\) |
$19$+$23$+$22$+$18$+$23$+$19$+$19$+$23$ |
8017.2.a |
$64.016$ |
\( \chi_{8017}(1, \cdot) \) |
$1$ |
$667$ |
$2$ |
\(327\)+\(340\) |
$327$+$340$ |
8018.2.a |
$64.024$ |
\( \chi_{8018}(1, \cdot) \) |
$1$ |
$315$ |
$11$ |
\(1\)+\(2\)+\(2\)+\(30\)+\(32\)+\(34\)+\(34\)+\(41\)+\(43\)+\(47\)+\(49\) |
$36$+$42$+$45$+$34$+$47$+$32$+$30$+$49$ |
8019.2.a |
$64.032$ |
\( \chi_{8019}(1, \cdot) \) |
$1$ |
$360$ |
$12$ |
\(3\)+\(3\)+\(21\)+\(\cdots\)+\(21\)+\(36\)+\(36\)+\(48\)+\(48\)+\(51\)+\(51\) |
$87$+$99$+$93$+$81$ |
8020.2.a |
$64.040$ |
\( \chi_{8020}(1, \cdot) \) |
$1$ |
$132$ |
$6$ |
\(1\)+\(2\)+\(28\)+\(29\)+\(35\)+\(37\) |
$0$+$0$+$0$+$0$+$37$+$29$+$29$+$37$ |
8021.2.a |
$64.048$ |
\( \chi_{8021}(1, \cdot) \) |
$1$ |
$617$ |
$4$ |
\(134\)+\(140\)+\(169\)+\(174\) |
$140$+$169$+$174$+$134$ |
8022.2.a |
$64.056$ |
\( \chi_{8022}(1, \cdot) \) |
$1$ |
$189$ |
$27$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(7\)+\(7\)+\(8\)+\(8\)+\(9\)+\(9\)+\(10\)+\(11\)+\(11\)+\(11\)+\(13\)+\(13\)+\(14\)+\(14\)+\(15\)+\(16\) |
$13$+$11$+$9$+$15$+$13$+$11$+$9$+$15$+$13$+$10$+$12$+$11$+$8$+$15$+$17$+$7$ |
8023.2.a |
$64.064$ |
\( \chi_{8023}(1, \cdot) \) |
$1$ |
$653$ |
$5$ |
\(3\)+\(155\)+\(158\)+\(165\)+\(172\) |
$161$+$172$+$165$+$155$ |
8024.2.a |
$64.072$ |
\( \chi_{8024}(1, \cdot) \) |
$1$ |
$232$ |
$29$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(2\)+\(3\)+\(3\)+\(3\)+\(18\)+\(20\)+\(22\)+\(23\)+\(24\)+\(30\)+\(32\)+\(33\) |
$28$+$31$+$30$+$27$+$34$+$25$+$24$+$33$ |
8025.2.a |
$64.080$ |
\( \chi_{8025}(1, \cdot) \) |
$1$ |
$336$ |
$44$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(3\)+\(3\)+\(3\)+\(4\)+\(5\)+\(5\)+\(5\)+\(6\)+\(7\)+\(10\)+\(11\)+\(11\)+\(12\)+\(13\)+\(13\)+\(16\)+\(16\)+\(17\)+\(17\)+\(18\)+\(18\)+\(22\)+\(22\)+\(29\)+\(29\) |
$38$+$43$+$49$+$39$+$41$+$36$+$40$+$50$ |
8026.2.a |
$64.088$ |
\( \chi_{8026}(1, \cdot) \) |
$1$ |
$334$ |
$4$ |
\(71\)+\(81\)+\(86\)+\(96\) |
$81$+$86$+$96$+$71$ |
8027.2.a |
$64.096$ |
\( \chi_{8027}(1, \cdot) \) |
$1$ |
$639$ |
$6$ |
\(1\)+\(1\)+\(143\)+\(149\)+\(169\)+\(176\) |
$149$+$170$+$177$+$143$ |
8028.2.a |
$64.104$ |
\( \chi_{8028}(1, \cdot) \) |
$1$ |
$92$ |
$16$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(5\)+\(7\)+\(8\)+\(8\)+\(11\)+\(11\)+\(16\)+\(16\) |
$0$+$0$+$0$+$0$+$18$+$18$+$28$+$28$ |
8028.2.h |
$64.104$ |
\( \chi_{8028}(4013, \cdot) \) |
$2$ |
$76$ |
$1$ |
\(76\) |
|
8029.2.a |
$64.112$ |
\( \chi_{8029}(1, \cdot) \) |
$1$ |
$539$ |
$8$ |
\(64\)+\(64\)+\(66\)+\(66\)+\(69\)+\(69\)+\(70\)+\(71\) |
$66$+$71$+$69$+$64$+$69$+$64$+$66$+$70$ |
8030.2.a |
$64.120$ |
\( \chi_{8030}(1, \cdot) \) |
$1$ |
$241$ |
$38$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(3\)+\(3\)+\(4\)+\(5\)+\(6\)+\(6\)+\(6\)+\(7\)+\(7\)+\(8\)+\(11\)+\(14\)+\(15\)+\(15\)+\(15\)+\(17\)+\(17\)+\(18\)+\(18\)+\(19\) |
$12$+$18$+$20$+$11$+$15$+$14$+$13$+$17$+$16$+$15$+$13$+$17$+$12$+$18$+$19$+$11$ |
8031.2.a |
$64.128$ |
\( \chi_{8031}(1, \cdot) \) |
$1$ |
$447$ |
$4$ |
\(92\)+\(102\)+\(121\)+\(132\) |
$102$+$121$+$132$+$92$ |
8032.2.a |
$64.136$ |
\( \chi_{8032}(1, \cdot) \) |
$1$ |
$250$ |
$12$ |
\(1\)+\(\cdots\)+\(1\)+\(28\)+\(28\)+\(30\)+\(\cdots\)+\(30\)+\(35\)+\(35\) |
$59$+$66$+$66$+$59$ |
8033.2.a |
$64.144$ |
\( \chi_{8033}(1, \cdot) \) |
$1$ |
$645$ |
$5$ |
\(1\)+\(153\)+\(154\)+\(168\)+\(169\) |
$153$+$169$+$169$+$154$ |
8034.2.a |
$64.152$ |
\( \chi_{8034}(1, \cdot) \) |
$1$ |
$205$ |
$30$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(4\)+\(7\)+\(8\)+\(8\)+\(9\)+\(10\)+\(11\)+\(11\)+\(11\)+\(12\)+\(13\)+\(13\)+\(14\)+\(14\)+\(14\)+\(15\)+\(16\) |
$12$+$14$+$15$+$10$+$12$+$14$+$12$+$13$+$15$+$11$+$9$+$16$+$9$+$17$+$18$+$8$ |
8035.2.a |
$64.160$ |
\( \chi_{8035}(1, \cdot) \) |
$1$ |
$535$ |
$5$ |
\(1\)+\(114\)+\(127\)+\(140\)+\(153\) |
$140$+$127$+$154$+$114$ |
8036.2.a |
$64.168$ |
\( \chi_{8036}(1, \cdot) \) |
$1$ |
$136$ |
$20$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(3\)+\(4\)+\(5\)+\(5\)+\(5\)+\(8\)+\(8\)+\(10\)+\(10\)+\(15\)+\(15\)+\(20\)+\(20\) |
$0$+$0$+$0$+$0$+$37$+$29$+$29$+$41$ |
8037.2.a |
$64.176$ |
\( \chi_{8037}(1, \cdot) \) |
$1$ |
$344$ |
$24$ |
\(1\)+\(\cdots\)+\(1\)+\(3\)+\(3\)+\(4\)+\(4\)+\(6\)+\(7\)+\(7\)+\(7\)+\(12\)+\(16\)+\(18\)+\(23\)+\(23\)+\(23\)+\(24\)+\(24\)+\(34\)+\(\cdots\)+\(34\) |
$34$+$34$+$34$+$34$+$53$+$51$+$46$+$58$ |
8038.2.a |
$64.184$ |
\( \chi_{8038}(1, \cdot) \) |
$1$ |
$334$ |
$4$ |
\(75\)+\(83\)+\(84\)+\(92\) |
$84$+$83$+$92$+$75$ |
8039.2.a |
$64.192$ |
\( \chi_{8039}(1, \cdot) \) |
$1$ |
$670$ |
$2$ |
\(279\)+\(391\) |
$279$+$391$ |
8040.2.a |
$64.200$ |
\( \chi_{8040}(1, \cdot) \) |
$1$ |
$132$ |
$29$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(5\)+\(5\)+\(5\)+\(6\)+\(6\)+\(6\)+\(7\)+\(8\)+\(\cdots\)+\(8\)+\(9\)+\(\cdots\)+\(9\)+\(10\) |
$9$+$7$+$11$+$6$+$10$+$6$+$6$+$11$+$8$+$9$+$8$+$8$+$9$+$8$+$11$+$5$ |
8041.2.a |
$64.208$ |
\( \chi_{8041}(1, \cdot) \) |
$1$ |
$559$ |
$10$ |
\(1\)+\(1\)+\(60\)+\(62\)+\(66\)+\(66\)+\(69\)+\(74\)+\(78\)+\(82\) |
$74$+$66$+$67$+$69$+$78$+$62$+$61$+$82$ |
8042.2.a |
$64.216$ |
\( \chi_{8042}(1, \cdot) \) |
$1$ |
$336$ |
$4$ |
\(67\)+\(82\)+\(86\)+\(101\) |
$82$+$86$+$101$+$67$ |
8043.2.a |
$64.224$ |
\( \chi_{8043}(1, \cdot) \) |
$1$ |
$383$ |
$21$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(3\)+\(40\)+\(41\)+\(41\)+\(44\)+\(46\)+\(50\)+\(52\)+\(53\) |
$46$+$50$+$54$+$42$+$49$+$45$+$43$+$54$ |
8044.2.a |
$64.232$ |
\( \chi_{8044}(1, \cdot) \) |
$1$ |
$167$ |
$2$ |
\(80\)+\(87\) |
$0$+$0$+$87$+$80$ |
8045.2.a |
$64.240$ |
\( \chi_{8045}(1, \cdot) \) |
$1$ |
$537$ |
$5$ |
\(1\)+\(126\)+\(127\)+\(141\)+\(142\) |
$126$+$142$+$142$+$127$ |
8046.2.a |
$64.248$ |
\( \chi_{8046}(1, \cdot) \) |
$1$ |
$196$ |
$20$ |
\(1\)+\(1\)+\(2\)+\(2\)+\(8\)+\(8\)+\(9\)+\(9\)+\(12\)+\(\cdots\)+\(12\)+\(14\)+\(14\)+\(16\)+\(16\) |
$21$+$28$+$28$+$21$+$28$+$21$+$21$+$28$ |
8047.2.a |
$64.256$ |
\( \chi_{8047}(1, \cdot) \) |
$1$ |
$619$ |
$5$ |
\(2\)+\(142\)+\(151\)+\(156\)+\(168\) |
$151$+$158$+$168$+$142$ |
8048.2.a |
$64.264$ |
\( \chi_{8048}(1, \cdot) \) |
$1$ |
$251$ |
$25$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(3\)+\(5\)+\(5\)+\(10\)+\(12\)+\(12\)+\(21\)+\(21\)+\(26\)+\(28\)+\(29\)+\(33\)+\(33\) |
$63$+$63$+$73$+$52$ |
8049.2.a |
$64.272$ |
\( \chi_{8049}(1, \cdot) \) |
$1$ |
$447$ |
$4$ |
\(95\)+\(104\)+\(119\)+\(129\) |
$104$+$119$+$129$+$95$ |