8001.2.a |
\(63.88830665722644\) |
\( \chi_{ 8001 }(1, \cdot) \) |
\(1\) |
\(314\) |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(7\)+\(11\)+\(12\)+\(13\)+\(14\)+\(15\)+\(16\)+\(16\)+\(16\)+\(18\)+\(19\)+\(20\)+\(22\)+\(28\)+\(32\)+\(40\) |
\(32\)+\(30\)+\(40\)+\(22\)+\(47\)+\(48\)+\(43\)+\(52\) |
8002.2.a |
\(63.896291697428566\) |
\( \chi_{ 8002 }(1, \cdot) \) |
\(1\) |
\(333\) |
\(1\)+\(1\)+\(1\)+\(69\)+\(77\)+\(89\)+\(95\) |
\(89\)+\(77\)+\(95\)+\(72\) |
8003.2.a |
\(63.90427673763069\) |
\( \chi_{ 8003 }(1, \cdot) \) |
\(1\) |
\(651\) |
\(147\)+\(153\)+\(172\)+\(179\) |
\(153\)+\(172\)+\(179\)+\(147\) |
8004.2.a |
\(63.91226177783282\) |
\( \chi_{ 8004 }(1, \cdot) \) |
\(1\) |
\(104\) |
\(1\)+\(1\)+\(1\)+\(8\)+\(9\)+\(9\)+\(12\)+\(13\)+\(16\)+\(16\)+\(18\) |
\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(14\)+\(10\)+\(12\)+\(16\)+\(10\)+\(18\)+\(16\)+\(8\) |
8005.2.a |
\(63.92024681803495\) |
\( \chi_{ 8005 }(1, \cdot) \) |
\(1\) |
\(533\) |
\(1\)+\(1\)+\(2\)+\(2\)+\(126\)+\(127\)+\(137\)+\(137\) |
\(127\)+\(139\)+\(139\)+\(128\) |
8006.2.a |
\(63.928231858237076\) |
\( \chi_{ 8006 }(1, \cdot) \) |
\(1\) |
\(334\) |
\(69\)+\(75\)+\(92\)+\(98\) |
\(75\)+\(92\)+\(98\)+\(69\) |
8007.2.a |
\(63.936216898439206\) |
\( \chi_{ 8007 }(1, \cdot) \) |
\(1\) |
\(415\) |
\(1\)+\(2\)+\(39\)+\(40\)+\(46\)+\(48\)+\(56\)+\(56\)+\(63\)+\(64\) |
\(48\)+\(56\)+\(64\)+\(40\)+\(56\)+\(48\)+\(40\)+\(63\) |
8008.2.a |
\(63.944201938641335\) |
\( \chi_{ 8008 }(1, \cdot) \) |
\(1\) |
\(180\) |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(2\)+\(3\)+\(5\)+\(6\)+\(8\)+\(9\)+\(\cdots\)+\(9\)+\(10\)+\(10\)+\(10\)+\(11\)+\(11\)+\(12\)+\(14\)+\(15\) |
\(10\)+\(15\)+\(11\)+\(9\)+\(14\)+\(9\)+\(10\)+\(12\)+\(10\)+\(13\)+\(11\)+\(11\)+\(14\)+\(11\)+\(10\)+\(10\) |
8009.2.a |
\(63.95218697884346\) |
\( \chi_{ 8009 }(1, \cdot) \) |
\(1\) |
\(667\) |
\(306\)+\(361\) |
\(306\)+\(361\) |
8010.2.a |
\(63.96017201904559\) |
\( \chi_{ 8010 }(1, \cdot) \) |
\(1\) |
\(144\) |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(\cdots\)+\(3\)+\(4\)+\(4\)+\(5\)+\(\cdots\)+\(5\)+\(6\)+\(6\)+\(6\)+\(7\)+\(8\)+\(8\)+\(10\)+\(10\) |
\(10\)+\(4\)+\(8\)+\(6\)+\(11\)+\(11\)+\(9\)+\(13\)+\(6\)+\(8\)+\(4\)+\(10\)+\(10\)+\(12\)+\(14\)+\(8\) |
8011.2.a |
\(63.968157059247716\) |
\( \chi_{ 8011 }(1, \cdot) \) |
\(1\) |
\(667\) |
\(309\)+\(358\) |
\(309\)+\(358\) |
8012.2.a |
\(63.976142099449845\) |
\( \chi_{ 8012 }(1, \cdot) \) |
\(1\) |
\(167\) |
\(79\)+\(88\) |
\(0\)+\(0\)+\(88\)+\(79\) |
8013.2.a |
\(63.984127139651974\) |
\( \chi_{ 8013 }(1, \cdot) \) |
\(1\) |
\(445\) |
\(94\)+\(106\)+\(116\)+\(129\) |
\(116\)+\(106\)+\(129\)+\(94\) |
8014.2.a |
\(63.9921121798541\) |
\( \chi_{ 8014 }(1, \cdot) \) |
\(1\) |
\(333\) |
\(2\)+\(76\)+\(76\)+\(88\)+\(91\) |
\(76\)+\(91\)+\(90\)+\(76\) |
8015.2.a |
\(64.00009722005623\) |
\( \chi_{ 8015 }(1, \cdot) \) |
\(1\) |
\(455\) |
\(1\)+\(\cdots\)+\(1\)+\(3\)+\(38\)+\(44\)+\(45\)+\(49\)+\(62\)+\(67\)+\(68\)+\(73\) |
\(52\)+\(63\)+\(68\)+\(45\)+\(67\)+\(44\)+\(41\)+\(75\) |
8016.2.a |
\(64.00808226025836\) |
\( \chi_{ 8016 }(1, \cdot) \) |
\(1\) |
\(166\) |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(3\)+\(3\)+\(3\)+\(4\)+\(5\)+\(\cdots\)+\(5\)+\(7\)+\(7\)+\(8\)+\(8\)+\(8\)+\(9\)+\(9\)+\(9\)+\(10\)+\(11\)+\(12\)+\(13\) |
\(19\)+\(23\)+\(22\)+\(18\)+\(23\)+\(19\)+\(19\)+\(23\) |
8017.2.a |
\(64.01606730046048\) |
\( \chi_{ 8017 }(1, \cdot) \) |
\(1\) |
\(667\) |
\(327\)+\(340\) |
\(327\)+\(340\) |
8018.2.a |
\(64.0240523406626\) |
\( \chi_{ 8018 }(1, \cdot) \) |
\(1\) |
\(315\) |
\(1\)+\(2\)+\(2\)+\(30\)+\(32\)+\(34\)+\(34\)+\(41\)+\(43\)+\(47\)+\(49\) |
\(36\)+\(42\)+\(45\)+\(34\)+\(47\)+\(32\)+\(30\)+\(49\) |
8019.2.a |
\(64.03203738086474\) |
\( \chi_{ 8019 }(1, \cdot) \) |
\(1\) |
\(360\) |
\(3\)+\(3\)+\(21\)+\(\cdots\)+\(21\)+\(36\)+\(36\)+\(48\)+\(48\)+\(51\)+\(51\) |
\(87\)+\(99\)+\(93\)+\(81\) |
8020.2.a |
\(64.04002242106687\) |
\( \chi_{ 8020 }(1, \cdot) \) |
\(1\) |
\(132\) |
\(1\)+\(2\)+\(28\)+\(29\)+\(35\)+\(37\) |
\(0\)+\(0\)+\(0\)+\(0\)+\(37\)+\(29\)+\(29\)+\(37\) |
8021.2.a |
\(64.048007461269\) |
\( \chi_{ 8021 }(1, \cdot) \) |
\(1\) |
\(617\) |
\(134\)+\(140\)+\(169\)+\(174\) |
\(140\)+\(169\)+\(174\)+\(134\) |
8022.2.a |
\(64.05599250147112\) |
\( \chi_{ 8022 }(1, \cdot) \) |
\(1\) |
\(189\) |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(7\)+\(7\)+\(8\)+\(8\)+\(9\)+\(9\)+\(10\)+\(11\)+\(11\)+\(11\)+\(13\)+\(13\)+\(14\)+\(14\)+\(15\)+\(16\) |
\(13\)+\(11\)+\(9\)+\(15\)+\(13\)+\(11\)+\(9\)+\(15\)+\(13\)+\(10\)+\(12\)+\(11\)+\(8\)+\(15\)+\(17\)+\(7\) |
8023.2.a |
\(64.06397754167325\) |
\( \chi_{ 8023 }(1, \cdot) \) |
\(1\) |
\(653\) |
\(3\)+\(155\)+\(158\)+\(165\)+\(172\) |
\(161\)+\(172\)+\(165\)+\(155\) |
8024.2.a |
\(64.07196258187538\) |
\( \chi_{ 8024 }(1, \cdot) \) |
\(1\) |
\(232\) |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(2\)+\(3\)+\(3\)+\(3\)+\(18\)+\(20\)+\(22\)+\(23\)+\(24\)+\(30\)+\(32\)+\(33\) |
\(28\)+\(31\)+\(30\)+\(27\)+\(34\)+\(25\)+\(24\)+\(33\) |
8025.2.a |
\(64.07994762207751\) |
\( \chi_{ 8025 }(1, \cdot) \) |
\(1\) |
\(336\) |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(3\)+\(3\)+\(3\)+\(4\)+\(5\)+\(5\)+\(5\)+\(6\)+\(7\)+\(10\)+\(11\)+\(11\)+\(12\)+\(13\)+\(13\)+\(16\)+\(16\)+\(17\)+\(17\)+\(18\)+\(18\)+\(22\)+\(22\)+\(29\)+\(29\) |
\(38\)+\(43\)+\(49\)+\(39\)+\(41\)+\(36\)+\(40\)+\(50\) |
8026.2.a |
\(64.08793266227964\) |
\( \chi_{ 8026 }(1, \cdot) \) |
\(1\) |
\(334\) |
\(71\)+\(81\)+\(86\)+\(96\) |
\(81\)+\(86\)+\(96\)+\(71\) |
8027.2.a |
\(64.09591770248177\) |
\( \chi_{ 8027 }(1, \cdot) \) |
\(1\) |
\(639\) |
\(1\)+\(1\)+\(143\)+\(149\)+\(169\)+\(176\) |
\(149\)+\(170\)+\(177\)+\(143\) |
8028.2.a |
\(64.10390274268389\) |
\( \chi_{ 8028 }(1, \cdot) \) |
\(1\) |
\(92\) |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(5\)+\(7\)+\(8\)+\(8\)+\(11\)+\(11\)+\(16\)+\(16\) |
\(0\)+\(0\)+\(0\)+\(0\)+\(18\)+\(18\)+\(28\)+\(28\) |
8028.2.h |
\(64.10390274268389\) |
\( \chi_{ 8028 }(4013, \cdot) \) |
\(2\) |
\(76\) |
\(76\) |
|
8029.2.a |
\(64.11188778288601\) |
\( \chi_{ 8029 }(1, \cdot) \) |
\(1\) |
\(539\) |
\(64\)+\(64\)+\(66\)+\(66\)+\(69\)+\(69\)+\(70\)+\(71\) |
\(66\)+\(71\)+\(69\)+\(64\)+\(69\)+\(64\)+\(66\)+\(70\) |
8030.2.a |
\(64.11987282308814\) |
\( \chi_{ 8030 }(1, \cdot) \) |
\(1\) |
\(241\) |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(3\)+\(3\)+\(4\)+\(5\)+\(6\)+\(6\)+\(6\)+\(7\)+\(7\)+\(8\)+\(11\)+\(14\)+\(15\)+\(15\)+\(15\)+\(17\)+\(17\)+\(18\)+\(18\)+\(19\) |
\(12\)+\(18\)+\(20\)+\(11\)+\(15\)+\(14\)+\(13\)+\(17\)+\(16\)+\(15\)+\(13\)+\(17\)+\(12\)+\(18\)+\(19\)+\(11\) |
8031.2.a |
\(64.12785786329027\) |
\( \chi_{ 8031 }(1, \cdot) \) |
\(1\) |
\(447\) |
\(92\)+\(102\)+\(121\)+\(132\) |
\(102\)+\(121\)+\(132\)+\(92\) |
8032.2.a |
\(64.1358429034924\) |
\( \chi_{ 8032 }(1, \cdot) \) |
\(1\) |
\(250\) |
\(1\)+\(\cdots\)+\(1\)+\(28\)+\(28\)+\(30\)+\(\cdots\)+\(30\)+\(35\)+\(35\) |
\(59\)+\(66\)+\(66\)+\(59\) |
8033.2.a |
\(64.14382794369453\) |
\( \chi_{ 8033 }(1, \cdot) \) |
\(1\) |
\(645\) |
\(1\)+\(153\)+\(154\)+\(168\)+\(169\) |
\(153\)+\(169\)+\(169\)+\(154\) |
8034.2.a |
\(64.15181298389666\) |
\( \chi_{ 8034 }(1, \cdot) \) |
\(1\) |
\(205\) |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(4\)+\(7\)+\(8\)+\(8\)+\(9\)+\(10\)+\(11\)+\(11\)+\(11\)+\(12\)+\(13\)+\(13\)+\(14\)+\(14\)+\(14\)+\(15\)+\(16\) |
\(12\)+\(14\)+\(15\)+\(10\)+\(12\)+\(14\)+\(12\)+\(13\)+\(15\)+\(11\)+\(9\)+\(16\)+\(9\)+\(17\)+\(18\)+\(8\) |
8035.2.a |
\(64.15979802409879\) |
\( \chi_{ 8035 }(1, \cdot) \) |
\(1\) |
\(535\) |
\(1\)+\(114\)+\(127\)+\(140\)+\(153\) |
\(140\)+\(127\)+\(154\)+\(114\) |
8036.2.a |
\(64.16778306430092\) |
\( \chi_{ 8036 }(1, \cdot) \) |
\(1\) |
\(136\) |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(3\)+\(4\)+\(5\)+\(5\)+\(5\)+\(8\)+\(8\)+\(10\)+\(10\)+\(15\)+\(15\)+\(20\)+\(20\) |
\(0\)+\(0\)+\(0\)+\(0\)+\(37\)+\(29\)+\(29\)+\(41\) |
8037.2.a |
\(64.17576810450305\) |
\( \chi_{ 8037 }(1, \cdot) \) |
\(1\) |
\(344\) |
\(1\)+\(\cdots\)+\(1\)+\(3\)+\(3\)+\(4\)+\(4\)+\(6\)+\(7\)+\(7\)+\(7\)+\(12\)+\(16\)+\(18\)+\(23\)+\(23\)+\(23\)+\(24\)+\(24\)+\(34\)+\(\cdots\)+\(34\) |
\(34\)+\(34\)+\(34\)+\(34\)+\(53\)+\(51\)+\(46\)+\(58\) |
8038.2.a |
\(64.18375314470518\) |
\( \chi_{ 8038 }(1, \cdot) \) |
\(1\) |
\(334\) |
\(75\)+\(83\)+\(84\)+\(92\) |
\(84\)+\(83\)+\(92\)+\(75\) |
8039.2.a |
\(64.1917381849073\) |
\( \chi_{ 8039 }(1, \cdot) \) |
\(1\) |
\(670\) |
\(279\)+\(391\) |
\(279\)+\(391\) |
8040.2.a |
\(64.19972322510942\) |
\( \chi_{ 8040 }(1, \cdot) \) |
\(1\) |
\(132\) |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(5\)+\(5\)+\(5\)+\(6\)+\(6\)+\(6\)+\(7\)+\(8\)+\(\cdots\)+\(8\)+\(9\)+\(\cdots\)+\(9\)+\(10\) |
\(9\)+\(7\)+\(11\)+\(6\)+\(10\)+\(6\)+\(6\)+\(11\)+\(8\)+\(9\)+\(8\)+\(8\)+\(9\)+\(8\)+\(11\)+\(5\) |
8041.2.a |
\(64.20770826531155\) |
\( \chi_{ 8041 }(1, \cdot) \) |
\(1\) |
\(559\) |
\(1\)+\(1\)+\(60\)+\(62\)+\(66\)+\(66\)+\(69\)+\(74\)+\(78\)+\(82\) |
\(74\)+\(66\)+\(67\)+\(69\)+\(78\)+\(62\)+\(61\)+\(82\) |
8042.2.a |
\(64.21569330551368\) |
\( \chi_{ 8042 }(1, \cdot) \) |
\(1\) |
\(336\) |
\(67\)+\(82\)+\(86\)+\(101\) |
\(82\)+\(86\)+\(101\)+\(67\) |
8043.2.a |
\(64.22367834571581\) |
\( \chi_{ 8043 }(1, \cdot) \) |
\(1\) |
\(383\) |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(3\)+\(40\)+\(41\)+\(41\)+\(44\)+\(46\)+\(50\)+\(52\)+\(53\) |
\(46\)+\(50\)+\(54\)+\(42\)+\(49\)+\(45\)+\(43\)+\(54\) |
8044.2.a |
\(64.23166338591794\) |
\( \chi_{ 8044 }(1, \cdot) \) |
\(1\) |
\(167\) |
\(80\)+\(87\) |
\(0\)+\(0\)+\(87\)+\(80\) |
8045.2.a |
\(64.23964842612007\) |
\( \chi_{ 8045 }(1, \cdot) \) |
\(1\) |
\(537\) |
\(1\)+\(126\)+\(127\)+\(141\)+\(142\) |
\(126\)+\(142\)+\(142\)+\(127\) |
8046.2.a |
\(64.2476334663222\) |
\( \chi_{ 8046 }(1, \cdot) \) |
\(1\) |
\(196\) |
\(1\)+\(1\)+\(2\)+\(2\)+\(8\)+\(8\)+\(9\)+\(9\)+\(12\)+\(\cdots\)+\(12\)+\(14\)+\(14\)+\(16\)+\(16\) |
\(21\)+\(28\)+\(28\)+\(21\)+\(28\)+\(21\)+\(21\)+\(28\) |
8047.2.a |
\(64.25561850652433\) |
\( \chi_{ 8047 }(1, \cdot) \) |
\(1\) |
\(619\) |
\(2\)+\(142\)+\(151\)+\(156\)+\(168\) |
\(151\)+\(158\)+\(168\)+\(142\) |
8048.2.a |
\(64.26360354672646\) |
\( \chi_{ 8048 }(1, \cdot) \) |
\(1\) |
\(251\) |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(3\)+\(5\)+\(5\)+\(10\)+\(12\)+\(12\)+\(21\)+\(21\)+\(26\)+\(28\)+\(29\)+\(33\)+\(33\) |
\(63\)+\(63\)+\(73\)+\(52\) |
8049.2.a |
\(64.27158858692859\) |
\( \chi_{ 8049 }(1, \cdot) \) |
\(1\) |
\(447\) |
\(95\)+\(104\)+\(119\)+\(129\) |
\(104\)+\(119\)+\(129\)+\(95\) |