Learn more

Note: Search results may be incomplete due to uncomputed quantities: num_forms (558562 objects)

Refine search


Results (1-50 of at least 1000)

Next   To download results, determine the number of results.
Label $A$ $\chi$ $\operatorname{ord}(\chi)$ Dim. Decomp. AL-dims.
8001.2.a $63.888$ \( \chi_{8001}(1, \cdot) \) $1$ $314$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(7\)+\(11\)+\(12\)+\(13\)+\(14\)+\(15\)+\(16\)+\(16\)+\(16\)+\(18\)+\(19\)+\(20\)+\(22\)+\(28\)+\(32\)+\(40\) \(32\)+\(30\)+\(40\)+\(22\)+\(47\)+\(48\)+\(43\)+\(52\)
8002.2.a $63.896$ \( \chi_{8002}(1, \cdot) \) $1$ $333$ \(1\)+\(1\)+\(1\)+\(69\)+\(77\)+\(89\)+\(95\) \(89\)+\(77\)+\(95\)+\(72\)
8003.2.a $63.904$ \( \chi_{8003}(1, \cdot) \) $1$ $651$ \(147\)+\(153\)+\(172\)+\(179\) \(153\)+\(172\)+\(179\)+\(147\)
8004.2.a $63.912$ \( \chi_{8004}(1, \cdot) \) $1$ $104$ \(1\)+\(1\)+\(1\)+\(8\)+\(9\)+\(9\)+\(12\)+\(13\)+\(16\)+\(16\)+\(18\) \(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(14\)+\(10\)+\(12\)+\(16\)+\(10\)+\(18\)+\(16\)+\(8\)
8005.2.a $63.920$ \( \chi_{8005}(1, \cdot) \) $1$ $533$ \(1\)+\(1\)+\(2\)+\(2\)+\(126\)+\(127\)+\(137\)+\(137\) \(127\)+\(139\)+\(139\)+\(128\)
8006.2.a $63.928$ \( \chi_{8006}(1, \cdot) \) $1$ $334$ \(69\)+\(75\)+\(92\)+\(98\) \(75\)+\(92\)+\(98\)+\(69\)
8007.2.a $63.936$ \( \chi_{8007}(1, \cdot) \) $1$ $415$ \(1\)+\(2\)+\(39\)+\(40\)+\(46\)+\(48\)+\(56\)+\(56\)+\(63\)+\(64\) \(48\)+\(56\)+\(64\)+\(40\)+\(56\)+\(48\)+\(40\)+\(63\)
8008.2.a $63.944$ \( \chi_{8008}(1, \cdot) \) $1$ $180$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(2\)+\(3\)+\(5\)+\(6\)+\(8\)+\(9\)+\(\cdots\)+\(9\)+\(10\)+\(10\)+\(10\)+\(11\)+\(11\)+\(12\)+\(14\)+\(15\) \(10\)+\(15\)+\(11\)+\(9\)+\(14\)+\(9\)+\(10\)+\(12\)+\(10\)+\(13\)+\(11\)+\(11\)+\(14\)+\(11\)+\(10\)+\(10\)
8009.2.a $63.952$ \( \chi_{8009}(1, \cdot) \) $1$ $667$ \(306\)+\(361\) \(306\)+\(361\)
8010.2.a $63.960$ \( \chi_{8010}(1, \cdot) \) $1$ $144$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(\cdots\)+\(3\)+\(4\)+\(4\)+\(5\)+\(\cdots\)+\(5\)+\(6\)+\(6\)+\(6\)+\(7\)+\(8\)+\(8\)+\(10\)+\(10\) \(10\)+\(4\)+\(8\)+\(6\)+\(11\)+\(11\)+\(9\)+\(13\)+\(6\)+\(8\)+\(4\)+\(10\)+\(10\)+\(12\)+\(14\)+\(8\)
8011.2.a $63.968$ \( \chi_{8011}(1, \cdot) \) $1$ $667$ \(309\)+\(358\) \(309\)+\(358\)
8012.2.a $63.976$ \( \chi_{8012}(1, \cdot) \) $1$ $167$ \(79\)+\(88\) \(0\)+\(0\)+\(88\)+\(79\)
8013.2.a $63.984$ \( \chi_{8013}(1, \cdot) \) $1$ $445$ \(94\)+\(106\)+\(116\)+\(129\) \(116\)+\(106\)+\(129\)+\(94\)
8014.2.a $63.992$ \( \chi_{8014}(1, \cdot) \) $1$ $333$ \(2\)+\(76\)+\(76\)+\(88\)+\(91\) \(76\)+\(91\)+\(90\)+\(76\)
8015.2.a $64.000$ \( \chi_{8015}(1, \cdot) \) $1$ $455$ \(1\)+\(\cdots\)+\(1\)+\(3\)+\(38\)+\(44\)+\(45\)+\(49\)+\(62\)+\(67\)+\(68\)+\(73\) \(52\)+\(63\)+\(68\)+\(45\)+\(67\)+\(44\)+\(41\)+\(75\)
8016.2.a $64.008$ \( \chi_{8016}(1, \cdot) \) $1$ $166$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(3\)+\(3\)+\(3\)+\(4\)+\(5\)+\(\cdots\)+\(5\)+\(7\)+\(7\)+\(8\)+\(8\)+\(8\)+\(9\)+\(9\)+\(9\)+\(10\)+\(11\)+\(12\)+\(13\) \(19\)+\(23\)+\(22\)+\(18\)+\(23\)+\(19\)+\(19\)+\(23\)
8017.2.a $64.016$ \( \chi_{8017}(1, \cdot) \) $1$ $667$ \(327\)+\(340\) \(327\)+\(340\)
8018.2.a $64.024$ \( \chi_{8018}(1, \cdot) \) $1$ $315$ \(1\)+\(2\)+\(2\)+\(30\)+\(32\)+\(34\)+\(34\)+\(41\)+\(43\)+\(47\)+\(49\) \(36\)+\(42\)+\(45\)+\(34\)+\(47\)+\(32\)+\(30\)+\(49\)
8019.2.a $64.032$ \( \chi_{8019}(1, \cdot) \) $1$ $360$ \(3\)+\(3\)+\(21\)+\(\cdots\)+\(21\)+\(36\)+\(36\)+\(48\)+\(48\)+\(51\)+\(51\) \(87\)+\(99\)+\(93\)+\(81\)
8020.2.a $64.040$ \( \chi_{8020}(1, \cdot) \) $1$ $132$ \(1\)+\(2\)+\(28\)+\(29\)+\(35\)+\(37\) \(0\)+\(0\)+\(0\)+\(0\)+\(37\)+\(29\)+\(29\)+\(37\)
8021.2.a $64.048$ \( \chi_{8021}(1, \cdot) \) $1$ $617$ \(134\)+\(140\)+\(169\)+\(174\) \(140\)+\(169\)+\(174\)+\(134\)
8022.2.a $64.056$ \( \chi_{8022}(1, \cdot) \) $1$ $189$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(7\)+\(7\)+\(8\)+\(8\)+\(9\)+\(9\)+\(10\)+\(11\)+\(11\)+\(11\)+\(13\)+\(13\)+\(14\)+\(14\)+\(15\)+\(16\) \(13\)+\(11\)+\(9\)+\(15\)+\(13\)+\(11\)+\(9\)+\(15\)+\(13\)+\(10\)+\(12\)+\(11\)+\(8\)+\(15\)+\(17\)+\(7\)
8023.2.a $64.064$ \( \chi_{8023}(1, \cdot) \) $1$ $653$ \(3\)+\(155\)+\(158\)+\(165\)+\(172\) \(161\)+\(172\)+\(165\)+\(155\)
8024.2.a $64.072$ \( \chi_{8024}(1, \cdot) \) $1$ $232$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(2\)+\(3\)+\(3\)+\(3\)+\(18\)+\(20\)+\(22\)+\(23\)+\(24\)+\(30\)+\(32\)+\(33\) \(28\)+\(31\)+\(30\)+\(27\)+\(34\)+\(25\)+\(24\)+\(33\)
8025.2.a $64.080$ \( \chi_{8025}(1, \cdot) \) $1$ $336$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(3\)+\(3\)+\(3\)+\(4\)+\(5\)+\(5\)+\(5\)+\(6\)+\(7\)+\(10\)+\(11\)+\(11\)+\(12\)+\(13\)+\(13\)+\(16\)+\(16\)+\(17\)+\(17\)+\(18\)+\(18\)+\(22\)+\(22\)+\(29\)+\(29\) \(38\)+\(43\)+\(49\)+\(39\)+\(41\)+\(36\)+\(40\)+\(50\)
8026.2.a $64.088$ \( \chi_{8026}(1, \cdot) \) $1$ $334$ \(71\)+\(81\)+\(86\)+\(96\) \(81\)+\(86\)+\(96\)+\(71\)
8027.2.a $64.096$ \( \chi_{8027}(1, \cdot) \) $1$ $639$ \(1\)+\(1\)+\(143\)+\(149\)+\(169\)+\(176\) \(149\)+\(170\)+\(177\)+\(143\)
8028.2.a $64.104$ \( \chi_{8028}(1, \cdot) \) $1$ $92$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(5\)+\(7\)+\(8\)+\(8\)+\(11\)+\(11\)+\(16\)+\(16\) \(0\)+\(0\)+\(0\)+\(0\)+\(18\)+\(18\)+\(28\)+\(28\)
8028.2.h $64.104$ \( \chi_{8028}(4013, \cdot) \) $2$ $76$ \(76\)
8029.2.a $64.112$ \( \chi_{8029}(1, \cdot) \) $1$ $539$ \(64\)+\(64\)+\(66\)+\(66\)+\(69\)+\(69\)+\(70\)+\(71\) \(66\)+\(71\)+\(69\)+\(64\)+\(69\)+\(64\)+\(66\)+\(70\)
8030.2.a $64.120$ \( \chi_{8030}(1, \cdot) \) $1$ $241$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(3\)+\(3\)+\(4\)+\(5\)+\(6\)+\(6\)+\(6\)+\(7\)+\(7\)+\(8\)+\(11\)+\(14\)+\(15\)+\(15\)+\(15\)+\(17\)+\(17\)+\(18\)+\(18\)+\(19\) \(12\)+\(18\)+\(20\)+\(11\)+\(15\)+\(14\)+\(13\)+\(17\)+\(16\)+\(15\)+\(13\)+\(17\)+\(12\)+\(18\)+\(19\)+\(11\)
8031.2.a $64.128$ \( \chi_{8031}(1, \cdot) \) $1$ $447$ \(92\)+\(102\)+\(121\)+\(132\) \(102\)+\(121\)+\(132\)+\(92\)
8032.2.a $64.136$ \( \chi_{8032}(1, \cdot) \) $1$ $250$ \(1\)+\(\cdots\)+\(1\)+\(28\)+\(28\)+\(30\)+\(\cdots\)+\(30\)+\(35\)+\(35\) \(59\)+\(66\)+\(66\)+\(59\)
8033.2.a $64.144$ \( \chi_{8033}(1, \cdot) \) $1$ $645$ \(1\)+\(153\)+\(154\)+\(168\)+\(169\) \(153\)+\(169\)+\(169\)+\(154\)
8034.2.a $64.152$ \( \chi_{8034}(1, \cdot) \) $1$ $205$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(4\)+\(7\)+\(8\)+\(8\)+\(9\)+\(10\)+\(11\)+\(11\)+\(11\)+\(12\)+\(13\)+\(13\)+\(14\)+\(14\)+\(14\)+\(15\)+\(16\) \(12\)+\(14\)+\(15\)+\(10\)+\(12\)+\(14\)+\(12\)+\(13\)+\(15\)+\(11\)+\(9\)+\(16\)+\(9\)+\(17\)+\(18\)+\(8\)
8035.2.a $64.160$ \( \chi_{8035}(1, \cdot) \) $1$ $535$ \(1\)+\(114\)+\(127\)+\(140\)+\(153\) \(140\)+\(127\)+\(154\)+\(114\)
8036.2.a $64.168$ \( \chi_{8036}(1, \cdot) \) $1$ $136$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(3\)+\(4\)+\(5\)+\(5\)+\(5\)+\(8\)+\(8\)+\(10\)+\(10\)+\(15\)+\(15\)+\(20\)+\(20\) \(0\)+\(0\)+\(0\)+\(0\)+\(37\)+\(29\)+\(29\)+\(41\)
8037.2.a $64.176$ \( \chi_{8037}(1, \cdot) \) $1$ $344$ \(1\)+\(\cdots\)+\(1\)+\(3\)+\(3\)+\(4\)+\(4\)+\(6\)+\(7\)+\(7\)+\(7\)+\(12\)+\(16\)+\(18\)+\(23\)+\(23\)+\(23\)+\(24\)+\(24\)+\(34\)+\(\cdots\)+\(34\) \(34\)+\(34\)+\(34\)+\(34\)+\(53\)+\(51\)+\(46\)+\(58\)
8038.2.a $64.184$ \( \chi_{8038}(1, \cdot) \) $1$ $334$ \(75\)+\(83\)+\(84\)+\(92\) \(84\)+\(83\)+\(92\)+\(75\)
8039.2.a $64.192$ \( \chi_{8039}(1, \cdot) \) $1$ $670$ \(279\)+\(391\) \(279\)+\(391\)
8040.2.a $64.200$ \( \chi_{8040}(1, \cdot) \) $1$ $132$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(5\)+\(5\)+\(5\)+\(6\)+\(6\)+\(6\)+\(7\)+\(8\)+\(\cdots\)+\(8\)+\(9\)+\(\cdots\)+\(9\)+\(10\) \(9\)+\(7\)+\(11\)+\(6\)+\(10\)+\(6\)+\(6\)+\(11\)+\(8\)+\(9\)+\(8\)+\(8\)+\(9\)+\(8\)+\(11\)+\(5\)
8041.2.a $64.208$ \( \chi_{8041}(1, \cdot) \) $1$ $559$ \(1\)+\(1\)+\(60\)+\(62\)+\(66\)+\(66\)+\(69\)+\(74\)+\(78\)+\(82\) \(74\)+\(66\)+\(67\)+\(69\)+\(78\)+\(62\)+\(61\)+\(82\)
8042.2.a $64.216$ \( \chi_{8042}(1, \cdot) \) $1$ $336$ \(67\)+\(82\)+\(86\)+\(101\) \(82\)+\(86\)+\(101\)+\(67\)
8043.2.a $64.224$ \( \chi_{8043}(1, \cdot) \) $1$ $383$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(3\)+\(40\)+\(41\)+\(41\)+\(44\)+\(46\)+\(50\)+\(52\)+\(53\) \(46\)+\(50\)+\(54\)+\(42\)+\(49\)+\(45\)+\(43\)+\(54\)
8044.2.a $64.232$ \( \chi_{8044}(1, \cdot) \) $1$ $167$ \(80\)+\(87\) \(0\)+\(0\)+\(87\)+\(80\)
8045.2.a $64.240$ \( \chi_{8045}(1, \cdot) \) $1$ $537$ \(1\)+\(126\)+\(127\)+\(141\)+\(142\) \(126\)+\(142\)+\(142\)+\(127\)
8046.2.a $64.248$ \( \chi_{8046}(1, \cdot) \) $1$ $196$ \(1\)+\(1\)+\(2\)+\(2\)+\(8\)+\(8\)+\(9\)+\(9\)+\(12\)+\(\cdots\)+\(12\)+\(14\)+\(14\)+\(16\)+\(16\) \(21\)+\(28\)+\(28\)+\(21\)+\(28\)+\(21\)+\(21\)+\(28\)
8047.2.a $64.256$ \( \chi_{8047}(1, \cdot) \) $1$ $619$ \(2\)+\(142\)+\(151\)+\(156\)+\(168\) \(151\)+\(158\)+\(168\)+\(142\)
8048.2.a $64.264$ \( \chi_{8048}(1, \cdot) \) $1$ $251$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(3\)+\(5\)+\(5\)+\(10\)+\(12\)+\(12\)+\(21\)+\(21\)+\(26\)+\(28\)+\(29\)+\(33\)+\(33\) \(63\)+\(63\)+\(73\)+\(52\)
8049.2.a $64.272$ \( \chi_{8049}(1, \cdot) \) $1$ $447$ \(95\)+\(104\)+\(119\)+\(129\) \(104\)+\(119\)+\(129\)+\(95\)
Next   To download results, determine the number of results.