Label |
$A$ |
$\chi$ |
$\operatorname{ord}(\chi)$ |
Dim. |
Decomp. |
AL-dims. |
8001.2.a |
$63.888$ |
\( \chi_{8001}(1, \cdot) \) |
$1$ |
$314$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(7\)+\(11\)+\(12\)+\(13\)+\(14\)+\(15\)+\(16\)+\(16\)+\(16\)+\(18\)+\(19\)+\(20\)+\(22\)+\(28\)+\(32\)+\(40\) |
\(32\)+\(30\)+\(40\)+\(22\)+\(47\)+\(48\)+\(43\)+\(52\) |
8002.2.a |
$63.896$ |
\( \chi_{8002}(1, \cdot) \) |
$1$ |
$333$ |
\(1\)+\(1\)+\(1\)+\(69\)+\(77\)+\(89\)+\(95\) |
\(89\)+\(77\)+\(95\)+\(72\) |
8003.2.a |
$63.904$ |
\( \chi_{8003}(1, \cdot) \) |
$1$ |
$651$ |
\(147\)+\(153\)+\(172\)+\(179\) |
\(153\)+\(172\)+\(179\)+\(147\) |
8004.2.a |
$63.912$ |
\( \chi_{8004}(1, \cdot) \) |
$1$ |
$104$ |
\(1\)+\(1\)+\(1\)+\(8\)+\(9\)+\(9\)+\(12\)+\(13\)+\(16\)+\(16\)+\(18\) |
\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(14\)+\(10\)+\(12\)+\(16\)+\(10\)+\(18\)+\(16\)+\(8\) |
8005.2.a |
$63.920$ |
\( \chi_{8005}(1, \cdot) \) |
$1$ |
$533$ |
\(1\)+\(1\)+\(2\)+\(2\)+\(126\)+\(127\)+\(137\)+\(137\) |
\(127\)+\(139\)+\(139\)+\(128\) |
8006.2.a |
$63.928$ |
\( \chi_{8006}(1, \cdot) \) |
$1$ |
$334$ |
\(69\)+\(75\)+\(92\)+\(98\) |
\(75\)+\(92\)+\(98\)+\(69\) |
8007.2.a |
$63.936$ |
\( \chi_{8007}(1, \cdot) \) |
$1$ |
$415$ |
\(1\)+\(2\)+\(39\)+\(40\)+\(46\)+\(48\)+\(56\)+\(56\)+\(63\)+\(64\) |
\(48\)+\(56\)+\(64\)+\(40\)+\(56\)+\(48\)+\(40\)+\(63\) |
8008.2.a |
$63.944$ |
\( \chi_{8008}(1, \cdot) \) |
$1$ |
$180$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(2\)+\(3\)+\(5\)+\(6\)+\(8\)+\(9\)+\(\cdots\)+\(9\)+\(10\)+\(10\)+\(10\)+\(11\)+\(11\)+\(12\)+\(14\)+\(15\) |
\(10\)+\(15\)+\(11\)+\(9\)+\(14\)+\(9\)+\(10\)+\(12\)+\(10\)+\(13\)+\(11\)+\(11\)+\(14\)+\(11\)+\(10\)+\(10\) |
8009.2.a |
$63.952$ |
\( \chi_{8009}(1, \cdot) \) |
$1$ |
$667$ |
\(306\)+\(361\) |
\(306\)+\(361\) |
8010.2.a |
$63.960$ |
\( \chi_{8010}(1, \cdot) \) |
$1$ |
$144$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(\cdots\)+\(3\)+\(4\)+\(4\)+\(5\)+\(\cdots\)+\(5\)+\(6\)+\(6\)+\(6\)+\(7\)+\(8\)+\(8\)+\(10\)+\(10\) |
\(10\)+\(4\)+\(8\)+\(6\)+\(11\)+\(11\)+\(9\)+\(13\)+\(6\)+\(8\)+\(4\)+\(10\)+\(10\)+\(12\)+\(14\)+\(8\) |
8011.2.a |
$63.968$ |
\( \chi_{8011}(1, \cdot) \) |
$1$ |
$667$ |
\(309\)+\(358\) |
\(309\)+\(358\) |
8012.2.a |
$63.976$ |
\( \chi_{8012}(1, \cdot) \) |
$1$ |
$167$ |
\(79\)+\(88\) |
\(0\)+\(0\)+\(88\)+\(79\) |
8013.2.a |
$63.984$ |
\( \chi_{8013}(1, \cdot) \) |
$1$ |
$445$ |
\(94\)+\(106\)+\(116\)+\(129\) |
\(116\)+\(106\)+\(129\)+\(94\) |
8014.2.a |
$63.992$ |
\( \chi_{8014}(1, \cdot) \) |
$1$ |
$333$ |
\(2\)+\(76\)+\(76\)+\(88\)+\(91\) |
\(76\)+\(91\)+\(90\)+\(76\) |
8015.2.a |
$64.000$ |
\( \chi_{8015}(1, \cdot) \) |
$1$ |
$455$ |
\(1\)+\(\cdots\)+\(1\)+\(3\)+\(38\)+\(44\)+\(45\)+\(49\)+\(62\)+\(67\)+\(68\)+\(73\) |
\(52\)+\(63\)+\(68\)+\(45\)+\(67\)+\(44\)+\(41\)+\(75\) |
8016.2.a |
$64.008$ |
\( \chi_{8016}(1, \cdot) \) |
$1$ |
$166$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(3\)+\(3\)+\(3\)+\(4\)+\(5\)+\(\cdots\)+\(5\)+\(7\)+\(7\)+\(8\)+\(8\)+\(8\)+\(9\)+\(9\)+\(9\)+\(10\)+\(11\)+\(12\)+\(13\) |
\(19\)+\(23\)+\(22\)+\(18\)+\(23\)+\(19\)+\(19\)+\(23\) |
8017.2.a |
$64.016$ |
\( \chi_{8017}(1, \cdot) \) |
$1$ |
$667$ |
\(327\)+\(340\) |
\(327\)+\(340\) |
8018.2.a |
$64.024$ |
\( \chi_{8018}(1, \cdot) \) |
$1$ |
$315$ |
\(1\)+\(2\)+\(2\)+\(30\)+\(32\)+\(34\)+\(34\)+\(41\)+\(43\)+\(47\)+\(49\) |
\(36\)+\(42\)+\(45\)+\(34\)+\(47\)+\(32\)+\(30\)+\(49\) |
8019.2.a |
$64.032$ |
\( \chi_{8019}(1, \cdot) \) |
$1$ |
$360$ |
\(3\)+\(3\)+\(21\)+\(\cdots\)+\(21\)+\(36\)+\(36\)+\(48\)+\(48\)+\(51\)+\(51\) |
\(87\)+\(99\)+\(93\)+\(81\) |
8020.2.a |
$64.040$ |
\( \chi_{8020}(1, \cdot) \) |
$1$ |
$132$ |
\(1\)+\(2\)+\(28\)+\(29\)+\(35\)+\(37\) |
\(0\)+\(0\)+\(0\)+\(0\)+\(37\)+\(29\)+\(29\)+\(37\) |
8021.2.a |
$64.048$ |
\( \chi_{8021}(1, \cdot) \) |
$1$ |
$617$ |
\(134\)+\(140\)+\(169\)+\(174\) |
\(140\)+\(169\)+\(174\)+\(134\) |
8022.2.a |
$64.056$ |
\( \chi_{8022}(1, \cdot) \) |
$1$ |
$189$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(7\)+\(7\)+\(8\)+\(8\)+\(9\)+\(9\)+\(10\)+\(11\)+\(11\)+\(11\)+\(13\)+\(13\)+\(14\)+\(14\)+\(15\)+\(16\) |
\(13\)+\(11\)+\(9\)+\(15\)+\(13\)+\(11\)+\(9\)+\(15\)+\(13\)+\(10\)+\(12\)+\(11\)+\(8\)+\(15\)+\(17\)+\(7\) |
8023.2.a |
$64.064$ |
\( \chi_{8023}(1, \cdot) \) |
$1$ |
$653$ |
\(3\)+\(155\)+\(158\)+\(165\)+\(172\) |
\(161\)+\(172\)+\(165\)+\(155\) |
8024.2.a |
$64.072$ |
\( \chi_{8024}(1, \cdot) \) |
$1$ |
$232$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(2\)+\(3\)+\(3\)+\(3\)+\(18\)+\(20\)+\(22\)+\(23\)+\(24\)+\(30\)+\(32\)+\(33\) |
\(28\)+\(31\)+\(30\)+\(27\)+\(34\)+\(25\)+\(24\)+\(33\) |
8025.2.a |
$64.080$ |
\( \chi_{8025}(1, \cdot) \) |
$1$ |
$336$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(3\)+\(3\)+\(3\)+\(4\)+\(5\)+\(5\)+\(5\)+\(6\)+\(7\)+\(10\)+\(11\)+\(11\)+\(12\)+\(13\)+\(13\)+\(16\)+\(16\)+\(17\)+\(17\)+\(18\)+\(18\)+\(22\)+\(22\)+\(29\)+\(29\) |
\(38\)+\(43\)+\(49\)+\(39\)+\(41\)+\(36\)+\(40\)+\(50\) |
8026.2.a |
$64.088$ |
\( \chi_{8026}(1, \cdot) \) |
$1$ |
$334$ |
\(71\)+\(81\)+\(86\)+\(96\) |
\(81\)+\(86\)+\(96\)+\(71\) |
8027.2.a |
$64.096$ |
\( \chi_{8027}(1, \cdot) \) |
$1$ |
$639$ |
\(1\)+\(1\)+\(143\)+\(149\)+\(169\)+\(176\) |
\(149\)+\(170\)+\(177\)+\(143\) |
8028.2.a |
$64.104$ |
\( \chi_{8028}(1, \cdot) \) |
$1$ |
$92$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(5\)+\(7\)+\(8\)+\(8\)+\(11\)+\(11\)+\(16\)+\(16\) |
\(0\)+\(0\)+\(0\)+\(0\)+\(18\)+\(18\)+\(28\)+\(28\) |
8028.2.h |
$64.104$ |
\( \chi_{8028}(4013, \cdot) \) |
$2$ |
$76$ |
\(76\) |
|
8029.2.a |
$64.112$ |
\( \chi_{8029}(1, \cdot) \) |
$1$ |
$539$ |
\(64\)+\(64\)+\(66\)+\(66\)+\(69\)+\(69\)+\(70\)+\(71\) |
\(66\)+\(71\)+\(69\)+\(64\)+\(69\)+\(64\)+\(66\)+\(70\) |
8030.2.a |
$64.120$ |
\( \chi_{8030}(1, \cdot) \) |
$1$ |
$241$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(3\)+\(3\)+\(4\)+\(5\)+\(6\)+\(6\)+\(6\)+\(7\)+\(7\)+\(8\)+\(11\)+\(14\)+\(15\)+\(15\)+\(15\)+\(17\)+\(17\)+\(18\)+\(18\)+\(19\) |
\(12\)+\(18\)+\(20\)+\(11\)+\(15\)+\(14\)+\(13\)+\(17\)+\(16\)+\(15\)+\(13\)+\(17\)+\(12\)+\(18\)+\(19\)+\(11\) |
8031.2.a |
$64.128$ |
\( \chi_{8031}(1, \cdot) \) |
$1$ |
$447$ |
\(92\)+\(102\)+\(121\)+\(132\) |
\(102\)+\(121\)+\(132\)+\(92\) |
8032.2.a |
$64.136$ |
\( \chi_{8032}(1, \cdot) \) |
$1$ |
$250$ |
\(1\)+\(\cdots\)+\(1\)+\(28\)+\(28\)+\(30\)+\(\cdots\)+\(30\)+\(35\)+\(35\) |
\(59\)+\(66\)+\(66\)+\(59\) |
8033.2.a |
$64.144$ |
\( \chi_{8033}(1, \cdot) \) |
$1$ |
$645$ |
\(1\)+\(153\)+\(154\)+\(168\)+\(169\) |
\(153\)+\(169\)+\(169\)+\(154\) |
8034.2.a |
$64.152$ |
\( \chi_{8034}(1, \cdot) \) |
$1$ |
$205$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(4\)+\(7\)+\(8\)+\(8\)+\(9\)+\(10\)+\(11\)+\(11\)+\(11\)+\(12\)+\(13\)+\(13\)+\(14\)+\(14\)+\(14\)+\(15\)+\(16\) |
\(12\)+\(14\)+\(15\)+\(10\)+\(12\)+\(14\)+\(12\)+\(13\)+\(15\)+\(11\)+\(9\)+\(16\)+\(9\)+\(17\)+\(18\)+\(8\) |
8035.2.a |
$64.160$ |
\( \chi_{8035}(1, \cdot) \) |
$1$ |
$535$ |
\(1\)+\(114\)+\(127\)+\(140\)+\(153\) |
\(140\)+\(127\)+\(154\)+\(114\) |
8036.2.a |
$64.168$ |
\( \chi_{8036}(1, \cdot) \) |
$1$ |
$136$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(3\)+\(4\)+\(5\)+\(5\)+\(5\)+\(8\)+\(8\)+\(10\)+\(10\)+\(15\)+\(15\)+\(20\)+\(20\) |
\(0\)+\(0\)+\(0\)+\(0\)+\(37\)+\(29\)+\(29\)+\(41\) |
8037.2.a |
$64.176$ |
\( \chi_{8037}(1, \cdot) \) |
$1$ |
$344$ |
\(1\)+\(\cdots\)+\(1\)+\(3\)+\(3\)+\(4\)+\(4\)+\(6\)+\(7\)+\(7\)+\(7\)+\(12\)+\(16\)+\(18\)+\(23\)+\(23\)+\(23\)+\(24\)+\(24\)+\(34\)+\(\cdots\)+\(34\) |
\(34\)+\(34\)+\(34\)+\(34\)+\(53\)+\(51\)+\(46\)+\(58\) |
8038.2.a |
$64.184$ |
\( \chi_{8038}(1, \cdot) \) |
$1$ |
$334$ |
\(75\)+\(83\)+\(84\)+\(92\) |
\(84\)+\(83\)+\(92\)+\(75\) |
8039.2.a |
$64.192$ |
\( \chi_{8039}(1, \cdot) \) |
$1$ |
$670$ |
\(279\)+\(391\) |
\(279\)+\(391\) |
8040.2.a |
$64.200$ |
\( \chi_{8040}(1, \cdot) \) |
$1$ |
$132$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(5\)+\(5\)+\(5\)+\(6\)+\(6\)+\(6\)+\(7\)+\(8\)+\(\cdots\)+\(8\)+\(9\)+\(\cdots\)+\(9\)+\(10\) |
\(9\)+\(7\)+\(11\)+\(6\)+\(10\)+\(6\)+\(6\)+\(11\)+\(8\)+\(9\)+\(8\)+\(8\)+\(9\)+\(8\)+\(11\)+\(5\) |
8041.2.a |
$64.208$ |
\( \chi_{8041}(1, \cdot) \) |
$1$ |
$559$ |
\(1\)+\(1\)+\(60\)+\(62\)+\(66\)+\(66\)+\(69\)+\(74\)+\(78\)+\(82\) |
\(74\)+\(66\)+\(67\)+\(69\)+\(78\)+\(62\)+\(61\)+\(82\) |
8042.2.a |
$64.216$ |
\( \chi_{8042}(1, \cdot) \) |
$1$ |
$336$ |
\(67\)+\(82\)+\(86\)+\(101\) |
\(82\)+\(86\)+\(101\)+\(67\) |
8043.2.a |
$64.224$ |
\( \chi_{8043}(1, \cdot) \) |
$1$ |
$383$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(3\)+\(40\)+\(41\)+\(41\)+\(44\)+\(46\)+\(50\)+\(52\)+\(53\) |
\(46\)+\(50\)+\(54\)+\(42\)+\(49\)+\(45\)+\(43\)+\(54\) |
8044.2.a |
$64.232$ |
\( \chi_{8044}(1, \cdot) \) |
$1$ |
$167$ |
\(80\)+\(87\) |
\(0\)+\(0\)+\(87\)+\(80\) |
8045.2.a |
$64.240$ |
\( \chi_{8045}(1, \cdot) \) |
$1$ |
$537$ |
\(1\)+\(126\)+\(127\)+\(141\)+\(142\) |
\(126\)+\(142\)+\(142\)+\(127\) |
8046.2.a |
$64.248$ |
\( \chi_{8046}(1, \cdot) \) |
$1$ |
$196$ |
\(1\)+\(1\)+\(2\)+\(2\)+\(8\)+\(8\)+\(9\)+\(9\)+\(12\)+\(\cdots\)+\(12\)+\(14\)+\(14\)+\(16\)+\(16\) |
\(21\)+\(28\)+\(28\)+\(21\)+\(28\)+\(21\)+\(21\)+\(28\) |
8047.2.a |
$64.256$ |
\( \chi_{8047}(1, \cdot) \) |
$1$ |
$619$ |
\(2\)+\(142\)+\(151\)+\(156\)+\(168\) |
\(151\)+\(158\)+\(168\)+\(142\) |
8048.2.a |
$64.264$ |
\( \chi_{8048}(1, \cdot) \) |
$1$ |
$251$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(3\)+\(5\)+\(5\)+\(10\)+\(12\)+\(12\)+\(21\)+\(21\)+\(26\)+\(28\)+\(29\)+\(33\)+\(33\) |
\(63\)+\(63\)+\(73\)+\(52\) |
8049.2.a |
$64.272$ |
\( \chi_{8049}(1, \cdot) \) |
$1$ |
$447$ |
\(95\)+\(104\)+\(119\)+\(129\) |
\(104\)+\(119\)+\(129\)+\(95\) |